A Complete Guide to ...

Utilising the objectives as written in
MATHEMATICS in the New Zealand CURRICULUM for

Level 4

This resource contains:
\square Table of contents
\square Teaching notes ■ In class activity sheets involving

- worked examples
- basic skills
- word problems
- problem solving
- group work

Homework / Assessment activity sheets
\square Answers
These resources are supplied as PHOTOCOPY MASTERS
Author: A. W. Stark

Author:
A. W. Stark

Copyright \mathbb{C}_{1998}
A. W. Stark

First Published March 1998
Formatting and publishing by
Andrew Słark
Formerly trading as:

NOW trading as:

P 0 Box 21304
Edgeware
CHRISTCHURCH 8143
NEW ZEALAND
企 +6433790516 or 國 +6433790619
This resource unit has been supplied on the understanding that copies of any part of this publication will not be given or sold to teachers or students from other schools or institutions.

This resource unit may be used as a master, and therefore can be photocopied, only by the school or institution that has purchased this resource unit.

Note from the author:

This resource ...

*A Complete Guide to Measurement

is one of a series of FIVE resources written utilising the objectives as stated in
Mathematics in the New Zealand Curriculum for Level 4.
With my experiences as a specialist mathematics teacher, I enjoyed mathematics as a subject, but I am aware that not all teachers feel the same way about mathematics. It can be a difficult subject to teach, especially if you are unsure of the content or curriculum and if resources are limited.

This series of resources has been written with you in mind. I am sure you will find this resource easy to use and of benefit to you and your class.

Resources in this series:

A Complete Guide to Number

written utilising the objectives as stated in
Mathematics in the New Zealand Curriculum for Level 4

*A Complete Guide to Measurement

written utilising the objectives as stated in
Resource Code:
L4MM
Mathematics in the New Zealand Curriculum for Level 4.

A Complete Guide to Geometry

written utilising the objectives as stated in
Resource Code:
L4MG
Mathematics in the New Zealand Curriculum for Level 4.

A Complete Guide to Algebra

written utilising the objectives as stated in
Mathematics in the New Zealand Curriculum for Level 4.
Resource Code:
L4MA

A Complete Guide to Statistics

written utilising the objectives as stated in
Resource Code:
L4MSt

Mathematics in the New Zealand Curriculum for Level 4.

For more information about these and other resources, please contact ...

Acknowledgement:

I would like to thank the staff and pupils of Mairehau Primary School, Christchurch for their assistance in making these resources possible.

This resource has been divided into EIGHT sections as listed below. Although there are no page numbers, the sections follow in sequential order as listed.

Note: 'In-class' Worksheets Masters are lesson by lesson reuseable worksheets that can be photocopied or copied on to an OHP.

Homework / Assessment Worksheets Masters can be used as homework to reinforce work covered in class or they can be used for pupil assessment.

Section	
	List of Measurement Objectives: Table of 'In-class' Worksheets / Objectives covered
)	Table of Contents: 'In-class’ Worksheets
3	'In-class' Worksheets Masters
4	Teaching Notes I Answers for 'In-class' Worksheets
	 Homework / Assessment Worksheets
	Homework / Assessment Worksheets Masters
∇	Answers for Homework / Assessment Worksheets
	Worksheet tracking sheets for teachers to record pupil names / worksheets covered

Measurement

The following are the objectives for Measurement, Level 4, as written in the MATHEMATICS in the New Zealand Curriculum document, first published 1992. [Refer Page 70]

Estimating and measuring

Within a range of meaningful contexts, students should be able to:

- M1 carry out measuring tasks involving reading scales to the nearest graduation;
- M2 calculate perimeters of circles, rectangles, and triangles, areas of rectangles and volumes of cuboids from measurements of length;
- M3 read and construct a variety of scales, timetables; and charts;
- M4 design and use a simple scale to measure qualitative data.

Developing concepts of time, rate and change
Within a range of meaningful contexts, students should be able to:

- M5 perform calculations with time, including 24-hour clock times.

At the top of each 'In-class' worksheet and Homework / Assessment worksheet, the Measurement objective (s) being covered has been indicated. EXAMPLE: M1 means objective 1, M2 means objective 2, etc.

The Mathematical Processes Skills:

Problem Solving,
 Developing Logic \& Reasoning,
 Communicating Mathematical Ideas,

are learned and assessed within the context of the more specific knowledge and skills of number, measurement, geometry, algebra and statistics. The following are the Mathematical Processes Objectives for Level 4.
Problem Solving Achievement Objectives [Refer page 24]

- MP1 pose questions for mathematical exploration;
- MP2 effectively plan mathematical exploration;
- MP3 devise and use problem-solving strategies to explore situations mathematically;
- MP4 find, and use with justification, a mathematical model as a problem-solving strategy;
- MP6 use equipment appropriately when exploring mathematical ideas.

Developing Logic and Reasoning Achievement Objectives [Refer page 26]

- MP8 classify objects, numbers and ideas;
- MP9 interpret information and results in context;
- MP10 make conjectures in a mathematical context;
- MP15 use words and symbols to describe and generalise patterns.

Communicating Mathematical Ideas Achievement Objectives [Refer page 28]

- MP16 use their own language and mathematical language and diagrams to explain mathematical ideas;
- MP17 devise and follow a set of instructions to carry out a mathematical activity;
- MP20 record information in ways that are helpful for drawing conclusions and making generalisations;
- MP21 report the results of mathematical explorations concisely and coherently.

Note:

The codes MP1, MP2, etc. have been created by numbering the Mathematical Processes Achievement Objectives in order as listed in the MATHEMATICS in the New Zealand Curriculum document. The numbering gaps occur as not all objectives are covered at Level 4. [Refer to pages 23-29 of the Curriculum document]
'In-class’ Measurement Worksheets
Table of Worksheet Number / Objectives Covered
See the opposite page for details of each objective.

	Measurement Objectives					Mathematical Processes Objectives												
Worksheet Number	$\begin{gathered} M \\ 1 \end{gathered}$	$\begin{gathered} M \\ 2 \end{gathered}$	$\begin{gathered} M \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{M} \\ 4 \end{gathered}$	$\begin{gathered} M \\ 5 \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{MP} \\ 1 \end{array}$	$\begin{gathered} \mathrm{MP} \\ 2 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { MP } \\ 3 \end{array}$	$\begin{gathered} \mathrm{MP} \\ 4 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { MP } \\ 6 \end{array}$	$\begin{gathered} \text { MP } \\ 8 \end{gathered}$	$\begin{gathered} \mathrm{MP} \\ 9 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{MP} \\ 10 \end{array}$	$\begin{gathered} \hline \text { MP } \\ 15 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { MP } \\ 16 \end{array}$	$\begin{array}{\|c} \hline \text { MP } \\ 17 \end{array}$	$\begin{array}{\|c\|} \hline \text { MP } \\ 20 \end{array}$	MP 21
1	*						*	*		\times		\times	*				*	
2	*							*				*						
3	*									*		*					$\boldsymbol{*}$	x
4	*							*				*						
5	*					*		\times				*						
6	*							\times				\times						
7	*					*		$\boldsymbol{*}$				\cdots						
8	*							*				*						
9	*					*		*				*						
10	*						*	*		*		*					*	
11		*				*		\times		*		\times			*			
12		*				*		\times				\cdots			*			
13		*				*	*			*		\cdots				*		
14		*				*		*		*		*				*		
15		*				*		\times				\times				*		
16		*				*		\times				\cdots				*		
17		*				*		*				\cdots				*		
18			*			*		$\boldsymbol{*}$				$\boldsymbol{*}$						
19			*			*		*				*				*		
20				*				\times				\cdots			*			
21					*			\times				\times						
22					*			*				\times					*	
23					*			*				*					*	

Table of Contents for the 'In-class' Worksheet Masters for Measurement, Level 4

Worksheet Number	Topic	Measurement Objective(s)										
1	Measurement instruments	M1										
2	Reading scales	M1										
	Marking Scales Master											
3	Accuracy of measurement	M1										
4	Units / conversions associated with length	M1										
5	Calculation involving mixed length units	M1										
6	Units / conversions associated with mass (weight)	M1										
7	Calculation involving mixed mass units	M1										
8	Units / conversions associated with capacity (volume)	M1										
9	Calculation involving mixed capacity units	M1										
10	Estimating and measuring with accuracy	M1										
11	Finding perimeter of a shape	M2										
12	Word problems involving perimeter	M2										
13	Finding the circumference of a circle	M2										
14	'If you can paint it, it has area'	M2										
15	Word problems involving area	M2										
16	'If you can fill it, it has volume'	M2										
	Isometric Paper Master											
17	Finding the volume of an object	M2										
18	Reading tables and charts	M3										
19	Understanding and using scale diagrams	M3										
20	Measuring qualitative data	M4										
21	Understanding time units / Analogue \& digital	M5										
22	Converting between a.m. / p.m. and 24hr time	M5										
23	Measuring time / Changes over time / Calculating rates	M5										
$\\|\\|\\|$	Teaching Notes / Answers	$\\|\\|\\|\\|\\|\\|\\|$										

Measurement instruments:

What is the distance between two trees?
How much water is needed to fill this jug?
How much weight has Mr Williamson put on this year?
What was the highest temperature today?
In what direction is the wind blowing?

All these questions involve 'measuring' something. There are many instruments designed to accurately measure. Most measuring devices have a scale or use standard units to measure objects.

Discuss what instruments could be used to measure the items listed above.

Task 1

All measuring instruments have a scale and are based on a standard unit. The standard units vary depending on what you are trying to measure. The ability to use measuring instruments correctly is an important skill.

1. Using some cardboard, a stick or some string, design and create a measuring device capable of measuring short or long distances.
Remember to divide the length of your measuring instrument into smaller equal parts, that is, to create a scale.

2. Use your instrument to measure such things as ... the height of your desk, the distance between two things in the classroom, the perimeter of a tennis court, the length of a pencil,
the circumference (perimeter) of a round rubbish tin, etc.
3. Discuss the difficulties (if any) that you experienced when using your measuring device.

Task 2

1. See if you can design and create a simple measuring instrument that can be used to measure the weight or mass of something. What constant unit are you going to use for your weighing device?
2. Use your instrument to measure such things as the weight of a pencil, the weight of a book, the weight of an apple, etc.

3. Discuss the difficulties (if any) that you experienced when using your measuring device.

Task 3

1. See if you can design and create a simple measuring instrument that can be used to measure how much something will hold - its capacity or volume. What constant unit are you going to use?
2. Use your instrument to measure such things as the volume of water a cup will hold, the volume of water a jug will hold, the volume of sand a box will hold, etc.

3. Discuss the difficulties (if any) that you experienced when using your measuring device.

Reading scales:

When reading a scale it is important to note the units and what each division on the scale represents.
Example: Look at these rulers.

What are the units on the rulers? What does each division on these rulers represent?
List the readings indicated by the pointers.
Answers: Ruler A : units are millimetres, each division $=2 \mathrm{~mm}$. $A=6 \mathrm{~mm}, B=32 \mathrm{~mm}, C=48 \mathrm{~mm}$.
Ruler B : units are centimetres, each division $=0.1 \mathrm{~cm} . D=0.9 \mathrm{~cm}, E=1.6 \mathrm{~cm}, F=2.8 \mathrm{~cm}$.

Task 4

Below are some diagrams of some measurement scales.
For each diagram ...
state the unit of measurement,
state what each division on the scale represents,
 give the measurements indicated by the pointers.
1.

3.

6.

7. Mark each point on the various scales as indicated, using the 'Marking Scales' master.

Ruler B

2. Mark these points on ruler B.

$$
\begin{array}{ll}
A=1.7 \mathrm{~m}, & B=5.2 \mathrm{~m}, \\
C=3.4 \mathrm{~m}, & D=290 \mathrm{~cm}
\end{array}
$$

3. On this protractor, mark the following angles.

$$
A=60^{\circ}, B=25^{\circ}, C=132^{\circ}, D=168^{\circ}
$$

4. Mark these points on the dial above.

$$
A=15 \mathrm{~kg}, B=80 \mathrm{~kg}, C=62.5 \mathrm{~kg}, D=137.5 \mathrm{~kg}
$$

Ruler C
5. Mark these points on ruler C. $A=0.9 \mathrm{~m}, \quad B=5.4 \mathrm{~m}$, $C=250 \mathrm{~cm}, D=3700 \mathrm{~mm}$

Ruler D

6. Mark these points on ruler D.
$A=47 \mathrm{~cm}, \quad B=33 \mathrm{~cm}$,
$C=0.15 \mathrm{~m}, \quad D=220 \mathrm{~mm}$
7. Mark these points on ruler E.

$$
\begin{array}{ll}
A=27 \mathrm{~mm}, & B=52 \mathrm{~mm}, \\
C=1.7 \mathrm{~cm}, & D=0.035 \mathrm{~m}
\end{array}
$$

Accuracy of measurement :

The degree of accuracy of a measurement depends on the measuring device being used and the scale that is on the instrument, plus the ability of the user to read the scale accurately.
Example: Jamie measured the length of this pencil using two different rulers.

How long is this pencil?

Answer: About 53 millimetres and about $5 \frac{1}{2}$ centimetres.

When a scale has small divisions, the length could be recorded as follows $53 \mathrm{~mm} \pm 1 \mathrm{~mm}$, where the symbol \pm means 'plus or minus' and 1 mm is the smallest division on the ruler.

From this, we can say that the pencil is no shorter than 52 mm , but is no longer than 54 mm .
If the weight of a sack of corn meal was recorded as $50 \mathrm{~kg} \pm 1 \mathrm{~kg}$, what is the lightest or heaviest weight this sack could be? Answer: 49 kg \& 51 kg .

Task 5

State the minimum and maximum measurement for each measurement given below.

1. $23 \mathrm{~mm} \pm 1 \mathrm{~mm}$
2. $57 \mathrm{~cm} \pm 1 \mathrm{~cm}$
3. $86 \mathrm{~mL} \pm 2 \mathrm{~mL}$
4. $74 g \pm 3 g$
5. $5.6 \mathrm{~m} \pm 0.1 \mathrm{~m}$
6. $\quad 9.4 \mathrm{~kg} \pm 0.2 \mathrm{~kg}$
7. $4.658 \mathrm{~m} \pm 0.005 \mathrm{~m}$
8. $1.380 \mathrm{~g} \pm 0.025 \mathrm{~g}$
9. $1500 \mathrm{~m} \pm 1 \mathrm{~m}$
10. $236 \mathrm{~mm} \pm 3 \mathrm{~mm}$
11. $560 \mathrm{~km} \pm 2 \mathrm{~km}$
12. $124.50 \mathrm{~m} \pm 0.05 \mathrm{~m}$
13. $2.367 \mathrm{~L} \pm 0.150 \mathrm{~L}$
14. $31 \mathrm{mg} \pm 4 \mathrm{mg}$
15. $8.95 \mathrm{~L} \pm 0.05 \mathrm{~L}$
16. $1.342 \mathrm{mg} \pm 0.250 \mathrm{mg}$

Using millimetres as the unit of measurement, measure the distance between the points on these lines listed below with $\pm 1 \mathrm{~mm}$ degree of accuracy.
17. points $A F$
18. points LE
19. points $G S$
20. points $R E$
21. points $A B$
22. points $B K$
23. points MP
24. points $L C$
25. points $Q B$
26. points PD

Task 6

Use measurement devices, such as bathroom scales, kitchen scales and measuring jugs for this task. Measure up to 10 items with each device.

1. Name the measuring device and state the degree of accuracy it can measure.
2. Using each device, measure at least 10 items. List the items measured and the weights / capacities.
3. Have a classmate measure the same items and compare your results.

Units / conversions associated with length:

In New Zealand, the Metric system is the measuring system we use.
The basic unit for measuring length is the metre.
The other most common units of length measurement are listed in this table. Depending on what you are measuring, one unit will be more suitable than another.

Example: What units would you use to measure the distance between two cities, the thickness of a match or the height of a door? Answers: km, mm and m .

kilometre	1000 times longer than a metre
metre	standard unit for length
centimetre	100 times shorter than a metre
millimetre	1000 times shorter than a metre

Task 7

Which unit of measurement, kilometre, centimetre, metre or millimetre would be best to measure ...

1. the thickness of a text book?
2. the distance between two towns?
3. your height?
4. the distance of a running race?
5. the thickness of a pen?

6. the width of a rugby field?
7. the height of a lamp post?
8. the length of the classroom?
9. the length of your shortest finger?
10. the height of a tree?

11. For each of the metric length units above, list 3 more items suitable to be measured by that unit.

The ability to convert between units is an important skill.
Copy each question and replace the with a number as you convert the following ...

12.	$1 \mathrm{~cm}=\mathrm{mm}$	13.	$10 \mathrm{~mm}=\mathrm{cm}$	14.	$8 \mathrm{~cm}=\mathrm{mm}$	15.	$20 \mathrm{~mm}=\mathrm{cm}$
16.	$30 \mathrm{~mm}=\mathrm{cm}$	17.	$55 \mathrm{~mm}=\mathrm{cm}$	18.	$178 \mathrm{~mm}=\mathrm{cm}$	19.	$254 \mathrm{~mm}=\mathrm{cm}$
20.	$2.3 \mathrm{~cm}=\mathrm{mm}$	21.	$9.7 \mathrm{~cm}=\mathrm{mm}$	22.	$12.3 \mathrm{~cm}=\mathrm{mm}$	23.	$34.8 \mathrm{~cm}=\mathrm{mm}$
24.	$253 \mathrm{~mm}=\bigcirc \mathrm{cm}$	25.	$15.6 \mathrm{~cm}=\mathrm{mm}$	26.	$2534 \mathrm{~mm}=\mathrm{cm}$	27.	$58.7 \mathrm{~cm}=\mathrm{mm}$

Copy each question and replace the with a number as you convert between the following ...
28. $1 \mathrm{~m}=\mathrm{mm}$
29. $1 \mathrm{~m}=\mathrm{cm}$
30. $4 \mathrm{~m}=\mathrm{cm}$
31. $6 \mathrm{~m}=\mathrm{mm}$
32. $150 \mathrm{~cm}=\mathrm{m}$
33. $265 \mathrm{~cm}=\mathrm{m}$
34. $985 \mathrm{~cm}=\mathrm{m}$
35. $562 \mathrm{~cm}=\mathrm{m}$
36. $1500 \mathrm{~mm}=\mathrm{m}$
37. $6523 \mathrm{~mm}=\mathrm{m}$
38. $7854 \mathrm{~mm}=\mathrm{m}$
39. $6720 \mathrm{~mm}=\mathrm{m}$
40. $3.65 \mathrm{~m}=\mathrm{mm}$
41. $5.67 \mathrm{~m}=\mathrm{cm}$
42. $4.63 \mathrm{~m}=\mathrm{mm}$
43. $9.84 \mathrm{~m}=\mathrm{cm}$

Copy each question and replace the with a number as you convert between the following ...
44. $1 \mathrm{~km}=\mathrm{m}$
45. $1000 \mathrm{~m}=\mathrm{km}$
46. $\quad 1.9 \mathrm{~km}=\mathrm{m}$
47. $2700 \mathrm{~m}=\mathrm{km}$
48. $3.25 \mathrm{~km}=\mathrm{m}$
49. $9650 \mathrm{~m}=\mathrm{km}$
50. $9.74 \mathrm{~km}=\mathrm{m}$
51. $4200 \mathrm{~m}=\mathrm{km}$
53. $5684 \mathrm{~m}=\mathrm{km}$
54. $5.63 \mathrm{~km}=\mathrm{m}$
55. $9680 \mathrm{~m}=\mathrm{km}$
57. $985 \mathrm{~m}=\mathrm{km}$
58. $0.562 \mathrm{~km}=\mathrm{m}$
59. $862 \mathrm{~m}=\mathrm{km}$
60. Create 10 conversion questions as above. Exchange questions with a classmate and complete the conversions.

Calculations involving mixed length units:

Example: Shane has two pieces of wood. One is 85 cm long the other is 2.1 m .
What is the total length of wood that Shane has?
Is the answer as simple as adding 85 and 2.1 together?
To be able to add these two length measurements, the units must be the same.
One of the measurement values must be converted, so that both units are the same.
Example: We can answer in metres, ... $85 \mathrm{~cm}=0.85 \mathrm{~m}$, therefore $0.85 \mathrm{~m}+2.1 \mathrm{~m}=2.95 \mathrm{~m}$, or we can answer in centimetres, $\ldots .2 .1 \mathrm{~m}=210 \mathrm{~cm}$, therefore $85 \mathrm{~cm}+210 \mathrm{~cm}=295 \mathrm{~cm}$.

Answer: Shane has 2.95 m or 295 cm of wood.

Task 8

Copy each question. Answer in the unit indicated in the brackets. All measurement units must be in the same unit before adding or subtracting.

1. $45 \mathrm{~mm}+6.3 \mathrm{~cm}=(\mathrm{cm})$
2. $7.8 \mathrm{~cm}-54 \mathrm{~mm}=(\mathrm{mm})$
3. $2.8 \mathrm{~m}+175 \mathrm{~cm}=(\mathrm{m})$
4. $5.2 \mathrm{~km}-2470 \mathrm{~m}=(\mathrm{km})$
5. $1.2 \mathrm{~m}+3750 \mathrm{~mm}=(\mathrm{m})$
6. $86 \mathrm{~mm}-5.9 \mathrm{~cm}=(\mathrm{cm})$
7. $579 \mathrm{~cm}+4.35 \mathrm{~m}=(\mathrm{m})$
8. $8650 \mathrm{~m}-4.9 \mathrm{~km}=(\mathrm{km})$
9. $5.6 \mathrm{~m}+257 \mathrm{~cm}=(\mathrm{m})$
10. $865 \mathrm{~mm}-5.3 \mathrm{~cm}=(\mathrm{mm})$
11. $9.2 \mathrm{~km}+1645 \mathrm{~m}=(\mathrm{m})$
12. $96 \mathrm{~cm}-0.35 \mathrm{~m}=(\mathrm{cm})$
13. $685 \mathrm{~m}+8.4 \mathrm{~km}=(\mathrm{m})$
14. $125 \mathrm{~mm}-9.4 \mathrm{~cm}=(\mathrm{cm})$
15. $3.25 \mathrm{~m}+1865 \mathrm{~mm}=(\mathrm{mm})$

Mr Jones is building a brick fence using bricks that are 25 cm long.
16. If the length of the fence is 30 m , how many bricks are needed for each layer of the fence?
17. How many bricks are needed to build a fence made up of 6 layers?
18. If the bricks cost 40 cents each, how much will all the bricks cost? Give your answer in dollars.

Mrs Proctor is going to recover a chair. She has worked out that she needs pieces of material that measure $1.7 \mathrm{~m}, 80 \mathrm{~cm}, 80 \mathrm{~cm}$ and 1.40 m in length.
19. Calculate the total length of material she needs. Give your answer in metres. 20. If the material costs $\$ 14.90$ per metre, what is the total cost of the material?

Jim runs laps around a local park each morning. The distance of each lap is 800 m .
21. How many metres would Jim run, if he ran 3 laps? Convert your answer to kilometres.
22. How many laps will he need to run to complete a distance of 4 km ?

Last week he ran 4 laps, 6 laps, 4 laps, 6 laps, 10 laps, 3 laps and 8 laps during his morning runs.
23. How many laps did he run last week?

24. Calculate the total distance of his runs, stating your answer in both metres and kilometres.

Rangi is going to build a new book shelf. The book shelf is 85 cm high and each shelf is 1.2 m long. This diagram shows what the book shelf will look like when finished.
25. Calculate the total length of wood needed to build the book shelf. Answer in metres.
26. If the wood costs $\$ 4.20$ per metre, what is the cost of buying the wood?
27. Make up some similar word questions as above that you can exchange with a classmate.

Units / conversions associated with mass (weight):

The basic unit for measuring mass is the gram. The mass of an object is often referred to as its weight.

The other most common units of mass measurement are listed in this table. Depending on what you are measuring, one unit will be more suitable than another.

Example: What units would you use to measure the weight of a piece of paper, the mass of a car and the weight of a person? Answers: mg, t and kg.

tonne	1000 times heavier than a kilogram
kilogram	1000 times heavier than a gram
gram	standard unit for mass
milligram	1000 times lighter than a gram

Task 9

Which unit of measurement, tonne, kilogram, gram or milligram would be best to measure ...

1. the weight of a truck?
2. the weight of a dog?
3. your weight?
4. the weight of a potato chip?
5. the weight of apples on a tree?

6. the weight of a feather?
7. the weight of a building?
8. the weight of a packet of biscuits?
9. the weight of a pen?

10. For each of the metric mass units above, list 3 more items suitable to be measured by that unit.

The ability to convert between units is an important skill.
Copy each question and replace the with a number as you convert the following ...

12. $1 \mathrm{~g}=\mathrm{mg}$	13.	$1000 \mathrm{mg}=$ - 9	14.	$5 \mathrm{~g}=\mathrm{mg}$	15.	$4000 \mathrm{mg}=$ - 9
16. $9.5 \mathrm{~g}=\mathrm{mg}$	17.	$6400 \mathrm{mg}=\mathrm{g}$	18.	$1.78 \mathrm{~g}=\mathrm{mg}$	19.	$2.54 \mathrm{~g}=\mathrm{mg}$
20. $1500 \mathrm{mg}=\mathrm{g}$	21.	$9.7 \mathrm{~g}=\mathrm{mg}$	22.	$2455 \mathrm{mg}=$ - g	23.	$35.6 \mathrm{~g}=\mathrm{mg}$
24. $755 \mathrm{mg}=\mathrm{g}$	25.	$865 \mathrm{mg}=\mathrm{g}$	26.	$0.534 \mathrm{~g}=\mathrm{mg}$	27.	$0.752 \mathrm{~g}=\mathrm{mg}$

Copy each question and replace the with a number as you convert between the following ...
28. $\quad 1 \mathrm{~kg}=\mathrm{g}$
29. $1000 \mathrm{~g}=\mathrm{kg}$
32. $2.7 \mathrm{~kg}=9$
33. $5600 \mathrm{~g}=\mathrm{kg}$
36. $1500 \mathrm{~g}=\mathrm{kg}$
37. $3.25 \mathrm{~kg}=\mathrm{g}$
40. $3.56 \mathrm{~kg}=\mathrm{g}$
41. $6250 \mathrm{~g}=\mathrm{kg}$
30. $4 \mathrm{~kg}=\mathrm{g}$
31. $2500 \mathrm{~g}=\mathrm{kg}$
34. $9.85 \mathrm{~kg}=9$
35. $5.875 \mathrm{~kg}=\mathrm{g}$
38. $7.34 \mathrm{~kg}=\mathrm{g}$
39. $\quad 6720 \mathrm{~g}=\mathrm{kg}$
42. $\quad 0.565 \mathrm{~kg}=\mathrm{g}$
43. $856 \mathrm{~g}=\mathrm{kg}$

Copy each question and replace the with a number as you convert between the following ...
44. $1 \dagger=\mathrm{kg}$
45. $1000 \mathrm{~kg}=t$
46. $\quad 1.9 \mathrm{t}=\mathrm{kg}$
47. $3200 \mathrm{~kg}=\dagger$
49. $6450 \mathrm{~kg}=\dagger$
50. $9.74 \dagger=\mathrm{kg}$
51. $6530 \mathrm{~kg}=$ †
52. $2575 \mathrm{~kg}=\dagger$
53. $6.35 t=\mathrm{kg}$
54. $8624 \mathrm{~kg}=\dagger$
55. $9.655 t=\mathrm{kg}$
56. $\quad 0.325 t=\mathrm{kg}$
57. $895 \mathrm{~kg}=$ t
58. $\quad 0.542 t=\mathrm{kg}$
59. $732 \mathrm{~kg}=\mathrm{t}$
60. Create 10 conversion questions as above. Exchange questions with a classmate and work out the conversions.

Calculations involving mixed mass units:

Example: Tracy has two bags of rice. One weighs 750 g and the other weighs 1.2 kg .
What is the total weight of rice that Tracy has?
Is the answer as simple as adding 750 and 1.2 together?
To be able to add these two mass (weight) measurements, the units must be the same. One of the measurement values must be converted, so that both units are the same.

Example: We can answer in grams, .. $1.2 \mathrm{~kg}=1200 \mathrm{~g}$, therefore $750+1200=1950 \mathrm{~g}$,
 or we can answer in kilograms, $\ldots 750 \mathrm{~g}=0.75 \mathrm{~kg}$, therefore $0.75+1.2=1.95 \mathrm{~kg}$.

Answer: Tracy has 1950g or 1.95kg of rice.

Task 10

Copy each question. Convert all measurements to the same unit before adding or subtracting. Answer in the units indicated in the brackets.

1. $5.3 \mathrm{~g}+1200 \mathrm{mg}=(\mathrm{mg})$
2. $7.8 \mathrm{~kg}-5400 \mathrm{~g}=(\mathrm{kg})$
3. $5.3 t+2540 \mathrm{~kg}=(t)$
4. $\quad 7.2 \mathrm{~kg}-5600 \mathrm{~g}=(\mathrm{g})$
5. $1.7 \dagger+6250 \mathrm{~kg}=(\mathrm{kg})$
6. $2530 \mathrm{mg}-1.7 \mathrm{~g}=(\mathrm{g})$
7. $\quad 6.85 \mathrm{~g}+7620 \mathrm{mg}=(\mathrm{g})$
8. $7535 \mathrm{~kg}-6.3 t=(t)$
9. $8.3 \mathrm{~kg}+7624 \mathrm{~g}=(\mathrm{kg})$
10. $8652 \mathrm{mg}-3.85 \mathrm{~g}=(\mathrm{mg})$
11. $8.7 t+1649 \mathrm{~kg}=(\mathrm{kg})$
12. $7450 \mathrm{~kg}-5.6 t=(t)$
13. $864 \mathrm{~kg}+4.3 \dagger=(\dagger)$
14. $6320 m g-3.4 g=(m g)$
15. $\quad 6.25 \mathrm{~g}+2365 \mathrm{mg}=(\mathrm{g})$

A local butcher shop sells Christmas hams of various sizes.
16. Today 5 hams were sold that weighed $910 \mathrm{~g}, 1.85 \mathrm{~kg}, 840 \mathrm{~g}, 1.75 \mathrm{~kg}$ and 1.65 kg .

What was the total weight of hams sold today? Answer in kilograms.
The butcher buys sausages in bulk and packs the sausages in 250 g packs.
17. How many 250 g packets can be made from 50 kg of sausages?

A bakery buys flour in 60kg sacks.
18. Calculate the weight of flour a bakery goes through if it buys 30 sacks of flour in six months. Answer in tonnes.
19. If a 60 kg sack costs $\$ 25.00$, how much has the bakery spent on flour?
20. If a small bread bun uses 300 g of flour, how many small buns can be made from a 60 kg sack of flour?

A small truck has been used to move large rocks and can carry a maximum load of 1.5 tonnes per load.
21. During the week, loads of rocks weighing $450 \mathrm{~kg}, 1.2 \mathrm{t}, 1.35 \mathrm{t}, 684 \mathrm{~kg}$ and 1.12 t were transported on the truck. Calculate the total of these loads. Answer in kgs.
22. How many maximum loads would it take if this truck is used to move 7500 kg of materials?

Julie made a batch of 25 biscuits that required 200 g of butter and 150 g of sugar.
23. Julie baked a batch of biscuits every week for 12 weeks.

Calculate the weight of butter and sugar she used. Answer in kilograms.
24. How many batches of biscuits could she bake if she had 5 kg of butter?
25. How many batches of biscuits could she bake if she had 6 kg of sugar?
26. Make up some similar word questions as above that you can exchange with a classmate.

Units / conversions associated with capacity (volume):

The basic unit for measuring capacity is the litre. The capacity that an object will hold is also called its volume.

The other most common units of capacity measurement are listed in this table. Depending on what you are measuring, one unit will be more suitable than another.

Example: What units could be used to measure the volume of a small bottle, the capacity of a swimming

kilolitre	1000 times greater capacity than a litre
litre	standard unit for capacity
millilitre	1000 times smaller capacity than a litre

Task 11

Which unit of measurement, kilolitre, litre or millilitre would be best to measure ...

1. the volume of water in a cup?
2. the volume of air in a room?
3. the capacity of a teaspoon?
4. the volume of paint needed to paint a wall?
5. the capacity of a hot water bottle?
6. the capacity of a teapot?
7. the volume of juice in a lemon?
8. the capacity of a large petrol storage tank?
9. the volume of milk in a cow's udder?

10. For each of the metric capacity units above, list 3 more items that can be measured by that unit.

The ability to convert between units is an important skill.
Copy each question and replace the with a number as you convert the following ...

12.	$1 \mathrm{~L}=\mathrm{mL}$	13.	$1000 \mathrm{~mL}=\mathrm{L}$	14.	$7 \mathrm{~L}=\mathrm{mL}$	15.
16.	$7.5 \mathrm{~L}=\mathrm{mL}$	17.	$59000 \mathrm{~mL}=\mathrm{mL}=\mathrm{L}$			
20.	$1400 \mathrm{~mL}=\mathrm{L}$	21.	$8.7 \mathrm{LL}=\mathrm{mL}$	$1.68 \mathrm{~L}=\mathrm{mL}$	22.	$3155 \mathrm{~mL}=\mathrm{L}$
24.	$685 \mathrm{~mL}=\mathrm{L}$	$25.64 \mathrm{~L}=\mathrm{mL}$				
23.	$775 \mathrm{~mL}=\mathrm{L}$	26.	$0.134 \mathrm{~L}=\mathrm{mL}$	27.	$0.952 \mathrm{~mL}=\mathrm{mL}$	

Copy each question and replace the with a number as you convert between the following ...
28. $1 \mathrm{~kL}=\mathrm{L}$
29. $1000 \mathrm{~L}=\mathrm{kL}$
30. $4 \mathrm{KL}=\mathrm{L}$
31. $2000 \mathrm{~L}=\mathrm{kL}$
32. $4.7 \mathrm{~kL}=\mathrm{L}$
33. $7600 \mathrm{~L}=\mathrm{kL}$
34. $8.85 \mathrm{~kL}=\mathrm{L}$
35. $6.845 \mathrm{~kL}=\mathrm{L}$
36. $1800 \mathrm{~L}=\mathrm{kL}$
37. $4.15 \mathrm{~kL}=\mathrm{L}$
38. $\quad 6.34 \mathrm{~kL}=\mathrm{L}$
39. $6720 \mathrm{~L}=\mathrm{kL}$
40. $2.96 \mathrm{~kL}=\mathrm{L}$
41. $7150 \mathrm{~L}=\mathrm{kL}$
42. $\quad 0.465 \mathrm{~kL}=\mathrm{L}$
43. $756 \mathrm{~L}=\mathrm{kL}$

Copy each question and replace the with a number as you convert between the following ...

| 44. | $4.505 \mathrm{~L}=\mathrm{mL}$ | 45. | $9685 \mathrm{~L}=\mathrm{kL}$ | 46. | $4625 \mathrm{~mL}=\mathrm{L}$ | 47. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 0.856 \mathrm{~kL}=\mathrm{L}$

60. Create 10 conversion questions as above. Exchange questions with a classmate and complete the conversions.

Calculations involving mixed capacity units:

Example: Richard bought a 1.5 L and a 750 mL bottle of juice.
What is the to tal volume of juice that Richard bought?
Is the answer as simple as adding 1.5 and 750 together?
To be able to add these two capacity (volume) measurements, the units must be the same.
One of the measurement values must be converted, so that both units are the same.
Example: We can answer in millilitres, ... $1.5 \mathrm{~L}=1500 \mathrm{~mL}$, therefore $1500+750=2250 \mathrm{~mL}$, or we can answer in litres, $\ldots 750 \mathrm{~mL}=0.75 \mathrm{~L}$, therefore $1.5+0.75=2.25 \mathrm{~L}$.

Answer: Richard bought 2250 mL or 2.25 L of juice.

Task 12

Copy each question. Answer in the unit indicated in the brackets. All measurement units must be in the same unit before adding or subtracting.

1.	$4.7 \mathrm{~L}+1500 \mathrm{~mL}=(\mathrm{mL})$	2.	$9.8 \mathrm{~kL}-6300 \mathrm{~L}=(\mathrm{kL})$
4.	$9.2 \mathrm{~kL}-6400 \mathrm{~L}=$ (L)	5.	$1.6 \mathrm{~kL}+5850 \mathrm{~mL}=(\mathrm{L})$
7.	$4.85 \mathrm{~L}+6420 \mathrm{~mL}=(\mathrm{L})$	8.	7195L-5.3kL $=(\mathrm{kL})$
10.	$9252 \mathrm{~mL}-6.85 \mathrm{~L}=(\mathrm{mL})$	11.	$8.7 \mathrm{~kL}+1549 \mathrm{~L}=(\mathrm{L})$
13.	$856 \mathrm{~L}+6.2 \mathrm{~kL}=(\mathrm{kL})$	14.	$6120 \mathrm{~mL}-4.4 \mathrm{~L}=(\mathrm{mL})$

3. $5.4 \mathrm{~L}+2240 \mathrm{~mL}=(\mathrm{L})$
4. $2730 \mathrm{~L}-1.9 \mathrm{~kL}=(\mathrm{kL})$
5. $8.1 \mathrm{~L}+6824 \mathrm{~mL}=(\mathrm{mL})$
6. $6950 \mathrm{~mL}-6.6 \mathrm{~L}=(\mathrm{L})$
7. $6.45 \mathrm{~kL}+2765 \mathrm{~L}=(\mathrm{kL})$

Jodie has a collection of several different shaped bottles.
16. If the capacity of five bottles was $750 \mathrm{~mL}, 2.5 \mathrm{~L}, 1.2 \mathrm{~L}, 350 \mathrm{~mL}$ and 1000 mL , calculate the total volume of these bottles. Answer in millilitres.
Laura made 7.5L of jam in a big pot on the stove.
17. How many 250 mL jars could she fill from this 7.5 L of jam?

A local swimming pool holds 5000 kL of water.
18. Calculate the time taken to fill the pool if a water pump can pump water into the pool at a rate of 200 kL per hour.

During a very hot week, water had to be added to the pool each day to replace the water lost because of evaporation.
19. If 25L, 33L, 12L, 15L and 10L of water was added during this week, calculate the total volume of water added. Answer in kilolitres.

Mr Moore is repainting his house in various colours.
20. If he buys four 500 mL tins, two 10 L pails and three 4L tins, calculate the volume of paint he obtained. Answer in litres.
21. If the 500 mL tins cost $\$ 15.50$ each, the 10 L pails cost $\$ 89.95$ each and the 4 L tins cost $\$ 64.95$ each, calculate the total cost of buying this paint.

Mr Johnstone has been sick for a long time. Each day he takes 5 mL of medicine, 4 times a day.
22. Calculate the volume of medicine he would take in four weeks. Answer in litres.
23. For how many days will a 250 mL bottle of medicine last?
24. For how many days will a one litre bottle of medicine last?

25. Make up some similar word questions as above that you can exchange with a classmate.

Estimating and measuring with accuracy:

"How much water will fill this container?" asked Alf.
"What is the weight of this parcel?" asked Pam.
"What is the height of the classroom?" asked Jacqui.
Being able to estimate can be helpful, just as being able to use any measuring device accurately is an important skill.

Task 13

Working in small groups for this task, think of some sensible measurement activities that could be undertaken by the whole class, or your teacher with provide you with suitable items or activities for this measuring task.
Example: the height of the door the volume of water in a bottle the distance between two trees
the weight of a brick
the width of the classroom etc...

For this task you will need to prepare a table with the following headings

Item or activity	Estimated measurement	Measuring instrument used	Actual measurement
For example: weight of a book	100 g	kitchen scales	110 g

Working in small groups, you are to estimate the length, height, width of an object as requested or the distance between two points, or the mass
 (weight) of various objects or the capacity (volume) of various containers.

Instructions:

1. List the measurement activities in your table.
2. Consider the estimation activity and record your estimate in the table. You are allowed to pick up the items to help estimate their weight. Minimal talking is allowed, but there is to be no discussion between groups.
3. Enter in the table the type of measuring instrument you would use to complete each measurement task.
4. Either your teacher will provide you with the accurate measurements or using various measuring instruments, complete the measurement task as accurately as you can, recording your results in the table. Remember to include the name of the measurement units.

How did your group get on?
If this task was conducted as a competition, the winning group would be the one whose estimated measurements were closest to the actual measurements.

Finding the perimeter of a shape:

The distance around the outside (or inside) of a shape is known as its perimeter.
Example: Find the perimeter for this rectangle below.

There are four sides ...
side $A B=3.9 \mathrm{~cm}$, side $B C=1.8 \mathrm{~cm}$,
side $C D=3.9 \mathrm{~cm}$, side $D A=1.8 \mathrm{~cm}$.
Add the length of the four sides to find the perimeter.
Answer: Perimeter $=11.4 \mathrm{~cm}$

An easy way to remember perimeter is to imagine that you are walking around the outside of a shape, starting and stopping at the same point or corner, as shown by the arrows on the diagram above.

Task 14

Calculate the perimeter of these shapes. Diagrams are not drawn to scale.
1.

3.

5.

6.

7.

Measure the length of the sides of these shapes below, to the nearest millimetre.
Use this information to calculate the perimeter of each shape.
9.

Task 15

Look around your classroom or school playground for at least 10 items that you can find the perimeter of. Example: a tennis court, your desk top, etc.

1. List the items, then estimate their perimeters.
2. Using rulers, tape measures or parts of your own body, such as your feet, measure the perimeter of your items.

Word problems involving perimeter:

Task 16

This diagram shows the course for a school cross-country race that is to be run around a local park.

1. How far is one lap of this course?
2. Convert this distance to kilometres.
3. If the senior girls run 2 laps, how far is their race?
4. How many laps do the senior boys run if their race is 4.8 km ?

A new fence is to be built around a house.
5. The rectangular section is 65 metres long and 30 metres wide. Calculate the total length of the fence.
6. If the fence costs $\$ 15.00$ per metre to build, calculate the cost of building this fence.

A 20 metre fence is to be built around a swimming pool.
7. If the shape around the pool is square, how long is each side?

Jenny is going to sew a ribbon around the bottom of a dress.
When the dress is lying flat it measures 65 cm along the bottom edge.
8. Calculate the length of ribbon that Jenny will need.
9. If the ribbon costs 25 cents per metre, what will it cost Jenny to do this?

2.4 m

Mr Jones is going to put up shade cloth on three sides of his vegetable garden to protect the plants, as shown in this diagram.
10. Calculate the length of shade cloth required.
11. If Mr Jones paid $\$ 83.60$ for the shade cloth, calculate the cost per metre of the shade cloth.

Miri is going to tie a ribbon around this parcel. The dimensions of the parcel are shown in the diagram.
12. Calculate the length of ribbon that is needed to go around the parcel, then add 60 cm to allow for a bow to be tied.
13. If the ribbon costs 25 cents per metre, calculate the cost of the ribbon.

These 6 squares have been arranged to form a rectangle. Each square has sides that are 2 cm long.
14. What is the perimeter of this shape?
15. Rearrange the smaller squares to form a shape that has a perimeter of 24 centimetres.
16. How would you rearrange these squares to form a shape with the maximum perimeter? Draw a diagram to show your arrangement.

Finding the circumference of a circle:

Perimeter refers to the distance around the outside of a shape with straight sides, but for a circle the same measurement is called the circumference.

A line across a circle, from one side to the other passing through the centre is called the diameter.

Task 17

How is the circumference of a circle and the diameter of a circle related?

1. Conduct this experiment to find out, using a cylinder (can of baked beans), some string and a ruler.

Step 1: Wrap some string around the circular part of the can once, marking the string where its joins.

Step 2: Unwrap the string and stretch it out straight.

Step 3: Measure the length of the string between the marks. This represents the circumference of a circle. Example: 21.5 cm

Step 4: Measure the distance across the centre of the circular end, passing through the centre. This represents the diameter of the circle.
Example: 7 cm
Step 5: Divide the circumference measurement by the diameter measurement. Example: $21.5 \div 7=3.07 \mathrm{~cm}$
2. Create a table with the following headings ...

Object	Circumference (C) $\mathbf{m m}$	Diameter (d) $\mathbf{m m}$	$\mathbf{C} \div \mathbf{d}$
For example: 10c coin	71 mm	23 mm	3.09 mm

Locate up to 10 circular objects within your classroom or use the
 objects supplied by your teacher.

Work out the circumference and measure the diameter of your objects, following the steps above.

Enter your measurements in the table and calculate $C \div d$.

3. Write a rule for the relationship between the circumference of a circle and its diameter.

Example: Circumference $=\times$ diameter

Use your rule to find the circumferences of these circles, given the diameters.
4.

5.

6.

7.

'If you can paint it, it has area':

The amount of surface a shape takes up is called its area.
Example: A painter covered the floor with 10 square sheets of newspaper to protect the carpet while he was painting. The area of the floor could be described as 10 square sheets.

In the metric system, the most commonly used area units are square millimetres, square centrimetres, square kilometres or hectares. A hectare is a $100 \mathrm{~m} \times 100 \mathrm{~m}=10000$ square metres. These area units can be written as abbreviations ... $\mathrm{mm}^{2}, \mathrm{~cm}^{2}, \mathrm{~m}^{2}$ and h.

Task 13

Estimate the area of the shaded shapes by counting whole and part squares.
1.

2.

3.

4.

Calculate the area of these shapes by counting squares. Remember to write 'sq units' after your answer.
5.

6.

7.

height

base
8. Copy and complete the following rule calculating the area of squares and rectangles.

Use your area rule to calculate the area of these shapes below.
Remember to include the name of the unit in your answers.
9.

10.

11.

12.

Measure the length of the base and height for each shape, then calculate its area, in mm^{2}.
13.

15. If the area of a rectangle is $28 \mathrm{~cm}^{2}$ and one side is 7 cm , how long is the other side?
16. If the area of a square is $81 \mathrm{~mm}^{2}$, what is the length of each side?

Word problems involving area:

Task 19

A soccer field measures 110 m long and 50 m wide.

1. Calculate the total playing area.

There are four small windows making up this large window. The small windows measure 30 cm across and 40 cm high.
2. Calculate the total area of glass in this window.

A fence that is 50 m long and 1.8 m high is to be spray painted with two coats of paint.
3. Calculate the total area that is to be painted. Give your answer in m^{2}.
4. If 1 litre of paint covers $15 \mathrm{~m}^{2}$ of the fence, how many litres of paint will be needed?
5. If the paint costs $\$ 64.95$ for a 4 L can, how much will the paint cost?

At a local school, 6 new bench tops are required for the wood technology room. Each bench top is 800 mm by 1200 mm .
6. Convert the bench top measurements to metres.
7. Calculate the area of one bench top and give your answer in m^{2}.
8. Calculate the total area of wood needed to replace all bench tops.
9. If the material for the bench tops costs $\$ 19.50$ per square metre, what will it cost to replace these bench tops?

A dress for a school uniform requires a piece of material that is 160 cm long and 100 cm wide.
10. Calculate the area of the piece of material and give your answer in square metres.
11. How much material would be needed to make 9 dresses, all the same size?
12. If the material costs $\$ 12.50$ per metre, what will the material cost to make these 9 dresses?

This diagram shows the floor plan of a new house.
13. Calculate the area of Room A.
14. What room has an area of $24 \mathrm{~m}^{2}$?
15. Calculate the area of Room C.
16. Calculate the area of Room D.

17. What is the total area of these four rooms?
18. If the four rooms are to have new carpet laid that costs $\$ 109$ per m^{2}, how much will the carpet cost?
19. A wooden deck is to be built on the side of the house. Calculate the area of the deck.
20. If a deck costs $\$ 25$ / square metre to build, calculate the cost of this deck.

21. Create some word problems of your own that can be exchanged with a classmate to work out.

'If you can fill it, it has volume':

Example: Karen used a 250 mL cup to fill a bottle with water. If the bottle required 5 cups to fill it, what is the volume of the bottle? Answer: $5 \times 250 \mathrm{~mL}=1250 \mathrm{~mL}$ or 1.25 L

The volume or capacity of an object is the amount of liquid (or air) it holds.

Example: Craig likes building with bricks that are the shape of cubes. If he neatly stacks 40 cubes in a pile, what is the volume of the stack? Answer: As we do not know the size of the cubes, we can say the volume of this pile is 40 cubes.

The volume or capacity of a 3D shape is the amount of space it takes up.

Task 20

Work out the volume of each pile of cubes. Remember to include cubes you cannot see.

Draw shapes on some isometric paper that have the following volumes ...
5. 4 cubes
6. 9 cubes
7. 16 cubes
8. 25 cubes

Rangi stacked a pile of cubes. The diagram below shows the 'end' view of the cubes.

base
9. Calculate the area of the 'end' 2D shape, using the rule ...

Area $=$ base \times height

The 'end' view for a 3D object is also known as the cross-section of the 3D object.

If you know the area of the cross-section of a 3D object, the volume can be calculated using the rule ...

Volume $=$ Area of cross-section \times depth

Calculate the volume of these objects, given the area of the cross section and the depth. The volume units are written as $\ldots \mathrm{mm}^{3}, \mathrm{~cm}^{3}$ and m^{3}.

10.

11.

12.

13.

Name:
Class:

Finding the volume of an object:

Following on from Task 20, the volume of an object can be found using the following rule ...

Volume $=$ base \times height \times depth
Example: Calculate the volume of this box.

Volume $=20 \times 10 \times 20=4000 \mathrm{~cm}^{3}$

In the metric system, the most common units of volume are cubic millimetres, cubic centimetres and cubic metres. These volume units can be written as abbreviations ... $\mathrm{mm}^{3}, \mathrm{~cm}^{3}$ and m^{3}.

Task 21

Calculate the volume of these objects.
1.

2.

3.

Mr Brown is making a new concrete path that is 60 metres long, 1.5 metres wide and 0.1 metres deep.
5. Calculate the volume of concrete he will need for this path.

A cereal box is 30 cm high, 15 cm wide and 7 cm deep.
6. Calculate the volume of the cereal box.
7. How much cereal would be in this box when it is half full?

The dimensions of a swimming pool are shown in the diagram.
The swimming pool is to be filled with water, 10 centimetres from the top.
8. Calculate the volume of water needed to fill the pool.
9. If the pool fills at a rate of $20 \mathrm{~m}^{3}$ of water per hour, how long will it take to fill the pool with water?

Reading tables and charts:

One way to display information is in the form of a table or a chart. A good table or chart presents the data clearly and is easy to read. Example: A calendar is a simple, but effective chart.

Task 22

This table shows some of the standard measures used in cooking. If you do not have metric measuring containers, cups, tablespoons,
 dessertspoons and teaspoons can be used.

1. How many tablespoons of milk would you need to add 60 mL of milk to a recipe?
2. $\quad 1500$ grams of sugar is the same as how many cups?
3. Five dessertspoons of water is the same as how many mL?
4. Describe how you could add 25 g of sugar to a recipe using various sized spoons?

Shelley prepared a chart to shows the distances, measured in kilometres, between her house and those of her friends. The letters B to E represent her friend's houses. Shelley lives at house A.
5. If Shelley walks to house D, how far has she walked?
6. Which two houses are 3.4 km apart?
7. How far is it from house B to house E ?
8. Calculate the distance travelled from houses A to D, then D to C, then C to E, then E to B and then back to house A.

This table shows the results for four teams in a soccer competition, after each team has played 3 games. Teams score 4 points for a win, 1 point for a loss and 2 points for a draw.
9. Calculate the points scored by Team A.
10. Which team has scored 6 points?
11. Which team is leading the competition? Explain your answer.

Team	Won	Drawn	Lost
A	2	0	1
B	1	0	2
C	2	1	0
D	2	0	1

In the fourth game, Team A won agains t Team D and Teams B \& C had a draw.
12. Redraw the table showing this information and recalculate the points each team now has.

Christchurch to Wellington				
Day	Depart	Arrive	Flight	Plane
Tues	0645	0740	CW01	JS31
Tues	0755	0850	CW02	JS31
Tues	1425	1310	CW07	JS50
Tues	1615	1700	CW09	JS50

The table shows information about some flights between Christchurch and Wellington.
13. When does flight CW07 depart Christchurch?
14. When does flight CW09 arrive in Wellington?
15. How long is flight CWO2?
16. How many different planes are on this service?
17. Which plane is the faster?
18. If a JS31 plane departed Christchurch at 1840, at what time would it arrive in Wellington?
19. Collect tables / charts from the newspaper or a magazine. Create questions from the information contained in the tables / charts and exchange with a classmate, for them to answer.

Understanding and using scale diagrams:

This is a scale diagram of a model battleship has been drawn using the scale below the diagram.
For this scale, 1 cm on paper represents an actual length of 0.5 m . If the diagram is 6 cm long, what is the actual length of the model battleship? Answer: 3 metres

Similar scales are used for maps and plans, such as house plans.

Task 23

For each scale diagram, use the scale that has been given to calculate the actual length.

1. Measure the length of the bus in this diagram.
2. Use the scale below to work out the actual length.

3. Measure the length of the killer whale in this diagram.
4. Use the scale to work out the actual length.

5. Measure the wing span of a model plane in this diagram.
6. Use the scale to work out the actual length.

7. Measure various objects in the classroom. Using an appropriate
 scale, draw scale diagrams of your objects.

This old map has been drawn using the scale below. The dots / letters represent towns.

Measure, to the nearest millimetre, the shortest distances between these towns. Convert your measurements to actual distances using the scale above ...
8. Town A and Town C.
9. Town B and Town F.
10. Town A and Town D.
11. Town C and Town E.
12. Town E and Town F.
13. Town B and Town E.

14. Create your own map, with a suitable scale. Exchange your map with a classmate and have her / him work out the distances between various points on your map.

Measuring qualitative data:

Collecting data, such as the number of pupils in your class is easy. But collecting and measuring qualitative data, such as attitudes, feelings, opinions, and behaviours on simple scales can be difficult.
Example: On a school report, a rating for Effort is determined by the scale Outstanding, Very satisfactory, Adequate, Inadequate.

What rating a pupils gets, is based on a teacher's opinion. What rating would you get?

Task 24

Nigel has not been feeling very well. He recorded how he was feeling using the scale below.

$\mathbf{5}=$ Great
$\mathbf{4}=$ Very well
$\mathbf{3}=$ Quite well
$2=$ Ok
$\mathbf{1}=$ Terrible

Study Nigel's graph.

1. How was Nigel feeling at 0600?
2. How was Nigel feeling at 5:00 p.m.?
3. Convert 150024 hr time to a.m or p.m. time.
4. What was the most common feeling that Nigel had?
5. At what times of the day was Nigel feeling 'very well'?

Joanne surveyed people coming out of the movies.
She asked each person, "On a scale of 1 to 5, where 5 means excellent and 1 means disappointing, how would you rate this movie?" She graphed her results.
7. How many people rate the movie a 5 ?
8. What rating did only two people choose?
9. Suggest possible words for the ratings 2,3 and 4.
10. How many people did Joanne survey?

David was tasting various foods (A to D), rating each food on a scale from sour to sweet as well as on a scale from hot \& spicy to mild. The graph shows his results.
11. How would you describe food A?
12. Which was the mildest food?
13. How would you describe food D?
14. Which food was hot \& spicy and sweet?

Think of an issue that is important to you.

15. Create a scale (1 to 5) that could be used to measure people's opinions on your issue. Collect data from your classmates, using your scale.
16. Create other scales to record moods, feelings or attitudes. Use your scale to collect more data from your classmates.

Understanding time units / Analogue \& digital time:

Being able to tell the time and convert between time units is an important skill.
Example: Is 4:15 p.m. in the morning or afternoon?

Are there 150 seconds in $2 \frac{1}{2}$ minutes?
If a TV programme starts at 2:15 p.m. and runs for 50 minutes, when will it end?
Answers: p.m. is in the afternoon, 150 seconds $=2 \frac{1}{2}$ minutes and the programme would end at 3:05 p.m.
Discuss how you think we would get on if there was no way of telling the time.

Task 25

Time yourself as you answer these questions involving basic time units and replace the as you convert between time units.

1. How many seconds in 4 minutes?
2. How many hours in $3 \frac{1}{2}$ days?
3. How many weeks in $\frac{1}{2}$ a year?
4. 450 seconds $=$ minutes
5. $\quad 150$ minutes $=$ hours
6. $38 \frac{1}{2}$ days $=$ weeks
7. How many minutes in 7 hours?
8. How many days in 11 weeks?
9. How many days in a leap year?
10. $9 \frac{1}{2}$ minutes $=$ seconds
11. 84 hours $=$ days
12. $9 \frac{1}{2}$ weeks $=$ days
13. How long did it take you to answer the above questions?

A clock with hands shows analogue time. When telling the time from an analogue clock we use expressions such as, 20 past 3 or $\frac{1}{4}$ to 4 . What would you say, as you read the time on these clocks?
14.

15.

16.

Draw clock faces to show these analogue times.
19. $\frac{1}{4}$ past 5
20. 10 to 7
21. 25 past 11
22. 5 to 2
23. 10 past 10

Some clocks do not have hands, but display the time as numbers. This is known as digital time.
Example:

02:15 means $\frac{1}{4}$ past 2 05:40 means 20 to 6

24. Write the analogue times in questions 14 to 23 above as the time would appear on digital clocks.

Add and subtract these mixed time units. Give your answer in the time unit in the brackets.

25	$50 \mathrm{sec}+3 \mathrm{~min}=\bigcirc(\mathrm{sec})$	26	10	27.	$120 \mathrm{sec}+4 \mathrm{~min}=(\min)$
28	$3 \mathrm{~min}-90 \mathrm{sec}=(\mathrm{min})$	29	$150 \mathrm{~min}+4 \mathrm{hrs}=(\mathrm{min})$	30.	5hrs - 240min - (hrs)
31.	$3 \frac{1}{2} \mathrm{hrs}+270 \mathrm{~min}=(\mathrm{hrs})$	32.	$450 \mathrm{~min}-2 \frac{1}{4} \mathrm{hrs}=(\mathrm{min})$	33	2 days + 15hrs = (hrs)
34.	$48 \mathrm{hrs}-1 \frac{1}{2}$ days $=$ (hrs)	35.	$36 \mathrm{hrs}+4 \frac{1}{2}$ days $=$ (days)	36.	6 days $-60 \mathrm{hrs}=$ (days)
37.	2 wks + 14 days $=$ (wks)	38.	56 days $-3 \frac{1}{2} w k s=$ (days)	39.	$24 \frac{1}{2}$ days +2 wks $=$ (wks)

Converting between a.m. / p.m. and 24hr time:

To avoid confusion between time in the morning (a.m.) and time inthe afternoon (p.m.), time can be expressed as 24 hour time. Many electrical items use this format of time.

Example: To convert 3:45 p.m. to 24 hr time, add 12. Therefore the time would be 1545.
It may be written as 15:45 and you say the time is fifteen forty-five. The time 0000 is 12:00 a.m.
Any time expressed as a number greater than 12 indicates a p.m. time.

Task 26

Convert these a.m. and p.m. times to 24 hr time.

1. $5: 17$ a.m.
2. $4: 23$ p.m.
3. 8:47 p.m.
4. $9: 53$ a.m
5. 11:32 a.m
6. 1:17 a.m.
7. 12:27 a.m.
8. 6:42 p.m.
9. $8: 15$ a.m.
10. 9:36 p.m.
11. $10: 32$ p.m.
12. $3: 41$ a.m
13. 2:57 p.m
14. $10: 27 \mathrm{a} . \mathrm{m}$.
15. 7:09 a.m.
16. $12: 04$ p.m.

Convert these 24 hr times to a.m or p.m. time.
17. 0526
18. 1214
19. 0759
20. 2040
21. 2312
22. 0849
23. 2139
24. 1053
25. 1542
26. 1924
27. 0036
28. 0708
29. 0916
30. 1336
31. 0153
32. 2130

On Monday, John started a game of golf at 1320 and played for 3 hrs 50 min .
33. At what time did John finish playing golf? Give your answer in a.m. / p.m. time.

On Saturday, John started playing golf at 9:30 a.m. and finished playing at 1:10 p.m.
34. For how long did John play golf on Saturday?

Kate has a 3 hour video tape and would like to tape all three programmes on one tape. The starting and finishing times of the programmes are shown in this table.

$\boldsymbol{\otimes} \boldsymbol{\otimes} \boldsymbol{\otimes}$	Start time	Finish time
Programme 1	9:30 a.m.	10:30 a.m.
Programme 2	2:15 p.m.	3:45 p.m.
Programme 3	11:20 p.m.	12:10 a.m.

35. How long is each programme?
36. Can Kate video all three programmes on one 3 hour tape?
37. Convert the start and finish time for each programme to 24 hr time.

This timetable shows when buses depart from the city and arrive at the airport.
38. How long does the bus trip take?

39. Complete the last two arrival times, that would appear in the table.
40. Redraw this timetable showing all times as a.m. / p.m. time.

Depart	Arrive
0850	0925
0920	0955
1140	1215
1820	$?$
1950	$?$

41. During the school day you do lots of different activities, plus you do things after school.

Example: Maths, Science, English, Social Studies, playing sport, playtime, lunch break, homework etc.
Draw up your own timetable for a day, showing what you do and when you do it.

Measuring time:

To accurately measure time, a stop watch can be used, or an analogue watch with a minute sweep hand.
Example: If a stop watch showed these numbers, what time is it?
01:09:3025
Answer: 1 hour, 9 minutes, 30.25 seconds.

Task 27

1. Working in small groups, think of an activity that can be timed using a stop watch. Example: The time taken to run a race.

The time taken to complete a maths quiz.
The time a paper dart stays afloat.
The time taken to fill different sized containers.
The time taken to walk to school. etc

'In-class' Worksheet

Teaching Notes \& Answers

How to use this section:

Teaching notes are enclosed in a box with a 'push-pin' at the top left corner. The teaching notes precede the answers for each worksheet / task. The teaching notes have been included to provide assistance and background information about each topic or unit of work.

Introduction:
The topic of Measurement is concerned with gaining an understanding of the importance of having standard units of measure for length, mass and capacity. This is achieved by first designing measuring devices and then by investigating the units used in the Metric System. The ability to estimate and measure accurately using various devices is an important skill. The concepts of perimeter / circumference, area and volume are explored through practical activities. The use of scales and scale diagrams for plans and maps are investigated, leading to the creating and displaying of qualitative data using scales and graphs. Analogue, digital and 24 hour time is also explored.

Measurement instruments:

Worksheet 1

In Tasks 1, 2 \& 3, pupils are to design various measuring instruments to measure length, mass and capacity. The purpose of these tasks is to highlight the importance of having a standard unit of measure for length, mass and capacity. Without such a standard, comparisons between measurements are meaningless. These tasks provide pupils with an opportunity to investigate the many different measuring instruments that were used in 'olden' days in New Zealand and in other culturals.
No model answers are given for these tasks.

Reading scales:

Worksheet 2

In Task 4, pupils are to list the position of pointers on various diagrams of scales. Pupils are to state the units of measurement and the smallest division for each scale. A 'Marking Scales' master sheet has been provided so that pupils can mark given points on various scales. The most important measurement instruments that pupils must be confident in using are rulers and protractors.

Task 4

1. units are millimetres, smallest division is $1 \mathrm{~mm}, A=52 \mathrm{~mm}, B=28 \mathrm{~mm}, C 17 \mathrm{~mm}, D=9 \mathrm{~mm}, E=39 \mathrm{~mm}$ 2. units are degrees, smallest division is $1^{\circ}, A=90^{\circ}, B=0^{\circ}$ or $180^{\circ}, C 60^{\circ}$ or $120^{\circ}, D=35^{\circ}$ or 145°, $E=15^{\circ}$ or 165°, (note: there are two scales on a protractor, hence the two answers, except for 90° 3. units are metres, smallest 0.1 m or $10 \mathrm{~cm}, A=5.4 \mathrm{~m}, B=2.5 \mathrm{~m}, C 1.3 \mathrm{~m}, D=0.4 \mathrm{~m}, E=4.1 \mathrm{~m}$
2. units are kilometres / hour, smallest division is $10 \mathrm{~km} / \mathrm{hr}, A=30 \mathrm{~km} / \mathrm{hr}, B=90 \mathrm{~km} / \mathrm{hr}, C=65 \mathrm{~km} / \mathrm{hr}$
3. units are kilograms, smallest division $5 \mathrm{kgs}, \quad A=5 \mathrm{kgs}, B=135 \mathrm{kgs}, C=95 \mathrm{kgs}, D=35 \mathrm{kgs}, E=62.5 \mathrm{kgs}$
4. units are centimetres, smallest division $0.2 \mathrm{~cm}, A=1.0 \mathrm{~cm}, B=5.8 \mathrm{~cm}, C=3.2 \mathrm{~cm}, D=10.2 \mathrm{~cm}, E=8.6 \mathrm{~cm}$
5. Marking scales master sheet

6.

6.

Worksheets 3 to 5

Accuracy of measurement:

Units / conversions associated with length:

Calculations involving mixed length units:
The accuracy of a measurement will depend on the smallest division of the scale on the measuring device and what is being measured.
Example: The distance between two towns is described as 25.5 km . T0 say that the towns are 25.487 km apart is too accurate and most probably unnecessary, therefore the distance could be given as $25.5 \mathrm{~km} \pm 0.5 \mathrm{~km}$.
In Task 5, pupils give the mimimum and maximum measurements, given the degree of accuracy or variation. The symbol ' \pm ' means 'plus or minus'. Pupils are to measure lines to the nearest millimetre \pm 1 mm .
In Task 6, pupils are to look at various measurement devices and to determine the degree of accuracy for each device.
In Task 7, pupils are to investigate the metric units for length, converting between various units.
In Task 8, pupils are to add and subtract metric length units; however, this can only be done when both units are the same. Therefore pupils are to convert some units before the calculations can be done. Word problems involving length units are also included.

Task 5

1. $22 \mathrm{~mm}, 24 \mathrm{~mm}$
2. $56 \mathrm{~cm}, 58 \mathrm{~cm}$
3. $1499 \mathrm{~m}, 1501 \mathrm{~m}$
4. $233 \mathrm{~mm}, 239 \mathrm{~mm}$
5. $84 \mathrm{~mL}, 88 \mathrm{~mL}$
6. $71 \mathrm{~g}, 77 \mathrm{~g}$
7. $558 \mathrm{~km}, 562 \mathrm{~km}$
8. $27 \mathrm{mg}, 35 \mathrm{mg}$
9. $5.5 \mathrm{~m}, 5.7 \mathrm{~m}$
10. $9.2 \mathrm{~kg}, 9.6 \mathrm{~kg}$
11. $124.45 \mathrm{~m}, 124.55 \mathrm{~m}$
12. $8.90 \mathrm{~L}, 9.00 \mathrm{~L}$
13. $4.653 \mathrm{~m}, 4.663 \mathrm{~m}$
14. $1.355 \mathrm{~g}, 1.405 \mathrm{~g}$
15. 2.217L, 2.517L 16. $1.092 \mathrm{mg}, 1.592 \mathrm{mg}$
16. $132 \mathrm{~mm} \pm 1 \mathrm{~mm}$
17. $124 \mathrm{~mm} \pm 1 \mathrm{~mm}$
18. $100 \mathrm{~mm} \pm 1 \mathrm{~mm}$
19. $89 \mathrm{~mm} \pm 1 \mathrm{~mm}$
20. $33 \mathrm{~mm} \pm 1 \mathrm{~mm}$
21. $100 \mathrm{~mm} \pm 1 \mathrm{~mm}$
22. $46 \mathrm{~mm} \pm 1 \mathrm{~mm}$
23. $63 \mathrm{~mm} \pm 1 \mathrm{~mm}$
24. $51 \mathrm{~mm} \pm 1 \mathrm{~mm}$
25. $46 \mathrm{~mm} \pm 1 \mathrm{~mm}$

Task 7

1. mm or cm
2. m
3. km
4. m
5. cm or m
6. m
7. m or km
8. mm or cm
9. mm
10. m
11. -
12. 10 mm
13. 1 cm
14. 80 mm
15. 2 cm
16. 3 cm
17. 5.5 cm
18. 17.8 cm
$\begin{array}{llllll}\text { 19. } 25.4 \mathrm{~cm} & 20.23 \mathrm{~mm} & \text { 21. } 97 \mathrm{~mm} & \text { 22. } 123 \mathrm{~mm} & \text { 23. } 348 \mathrm{~mm} & \text { 24. } 25.3 \mathrm{~cm}\end{array} \quad 25.156 \mathrm{~mm}$
$\begin{array}{lllllll}\text { 26. } 253.4 \mathrm{~cm} & 27.587 \mathrm{~mm} & 28.1000 \mathrm{~mm} & \text { 29. } 100 \mathrm{~cm} & 30.400 \mathrm{~cm} & 31.6000 \mathrm{~mm} & 32.1 .5 \mathrm{~m}\end{array}$
$\begin{array}{lllllll}33 . & 2.65 \mathrm{~m} & 34.9 .85 \mathrm{~m} & 35.5 .62 \mathrm{~m} & 36.1 .5 \mathrm{~m} & 37.6 .523 \mathrm{~m} & 38.7 .854 \mathrm{~m}\end{array} \quad 39.6 .72 \mathrm{~m}$
$\begin{array}{lllllll}40.3650 \mathrm{~mm} & 41.567 \mathrm{~cm} & 42.4630 \mathrm{~mm} & 43.984 \mathrm{~cm} & 44.1000 \mathrm{~m} & 45.1 \mathrm{~km} & 46.1900 \mathrm{~m}\end{array}$
$\begin{array}{lllllll}47.2 .7 \mathrm{~km} & 48.3250 \mathrm{~m} & 49.9 .65 \mathrm{~km} & 50.9740 \mathrm{~m} & 51.4 .2 \mathrm{~km} & 52.56300 \mathrm{~m} & 53.5 .684 \mathrm{~km}\end{array}$
19. $5630 \mathrm{~m} \quad 55.9 .68 \mathrm{~km} \quad 56.235 \mathrm{~m} \quad 57.0 .985 \mathrm{~km} \quad 58.562 \mathrm{~m} \quad 59.0 .862 \mathrm{~km}$

Task 8

1. $4.5+6.3=10.8 \mathrm{~cm}$
2. $78-54=24 \mathrm{~mm}$
3. $2.8+1.75=4.55 m$
4. $5.2-2.47=2.73 \mathrm{~km}$
5. $1.2+3.75=4.95 \mathrm{~m}$
6. $8.6-5.9=2.7 \mathrm{~cm}$
7. $5.79+4.35=10.14 \mathrm{~m}$
8. $8.65-4.9=3.75 \mathrm{~km}$
9. $5.6+2.57=8.17 \mathrm{~m}$
10. $865-53=812 \mathrm{~mm}$
11. $9200+1645=10845 \mathrm{~m}$
12. $96-35=61 \mathrm{~cm}$
13. $685+8400=9085 \mathrm{~m}$
14. $12.5-9.4=3.1 \mathrm{~cm} \quad 15.3250+1865=5115 \mathrm{~mm}$
15. 120 bricks per layer
16. 720 bricks 18. $\$ 288$ 19. 4.7 m of material
17. $\$ 70.03$
18. 2400 m or 2.4 km
19. 5 laps
20. 41 laps
21. 32800 m or 32.8 km
22. $4 \times 1.2=4.8 \mathrm{~m}, 0.85 \times 2=1.7 \mathrm{~m}$, Total $=6.5 \mathrm{~m}$ of wood
23. $\$ 27.30$

Units / conversions associated with mass (weight):
Calculations involving mixed mass units:
In Task 9, pupils are to investigate the metric units for mass (weight), converting between various units.

In Task 10, pupils are to add and subtract metric mass units. However this can only be done when both units are the same. Therefore pupils are to convert some units before the calculations can be completed. Word problems involving mass units are also included.

Task 9

Task 10

1. $5300+1200=6500 \mathrm{mg}$
2. $7.8-5.4=2.4 \mathrm{~kg}$
3. $5.3+2.54=7.84 \dagger$
4. $7200-5600=1600 g$
5. $1700+6250=7950 \mathrm{~kg}$
6. $2.53-1.7=0.83 \mathrm{~g}$
7. $6.85+7.62=14.47 g$
8. $7.535-6.3=1.235 \dagger$
9. $8.3+7.624=15.924 \mathrm{~kg}$
10. $8652-3850=4802 \mathrm{mg}$
11. $8700+1649=10349 \mathrm{~kg}$
12. $7.45-5.6=1.85 \dagger \quad 13.0 .864+4.3=5.164 \dagger \quad 14.6320-3400=2920 \mathrm{mg} \quad 15.6 .25+2.365=8.615 \mathrm{~g}$
13. 7 kgs 17. 200 packs 18. $1.8 \dagger$ 19. $\$ 750$ 20. 200 buns 21. $4804 \mathrm{~kg} \quad 22.5$ loads
14. 2.4 kg of butter, 1.8 kg of sugar 24. 25 batches 25. 40 batches.

Units / conversions associated with capacity (volume):
Calculations involving mixed capacity units:
In Task 11 , pupils are to investigate the metric units for capacity (volume), converting between various units.
In Task 10, pupils are to add and subtract metric capacity units. However this can only be done when both units are the same. Therefore pupils are to convert some units before the calculations can be completed. Word problems involving capacity units are also included.

Task 11

$\begin{array}{lllllllll}\text { 1. } \mathrm{mL} & \text { 2. } L & \text { 3. } L & \text { 4. } \mathrm{mL} \text { or } \mathrm{L} & \text { 5. } \mathrm{mL} & \text { 6. } \mathrm{mL} & \text { 7. } L & \text { 8. } L & \text { 9. } \mathrm{kL} \\ \text { 10. } L & 11 .-\end{array}$
$\begin{array}{lllllll}\text { 12. } 1000 \mathrm{~mL} & \text { 13. } 1 \mathrm{~L} & 14.7000 \mathrm{~mL} & \text { 15. } 3 \mathrm{~L} & \text { 16. } 7500 \mathrm{~mL} & 17.5 .9 \mathrm{~L} & 18.1680 \mathrm{~mL} \\ \text { 19. } 2640 \mathrm{~mL}\end{array}$ $\begin{array}{llllll}\text { 20. } 1.4 \mathrm{~L} & 21.8700 \mathrm{~mL} & \text { 22. } 3.155 \mathrm{~L} & \text { 23. } 16600 \mathrm{~mL} & 24.0 .685 \mathrm{~L} & \text { 25. } 0.775 \mathrm{~L} \\ \text { 26. } 134 \mathrm{~mL}\end{array}$ $\begin{array}{lllllll}\text { 27. } 952 \mathrm{~mL} & \text { 28. } 1000 \mathrm{~L} & 29.1 \mathrm{~kL} & \text { 30. } 4000 \mathrm{~L} & 31.2 \mathrm{~kL} & 32.4700 \mathrm{~L} & 33.7 .6 \mathrm{~kL} \\ 34.8850 \mathrm{~L}\end{array}$ $\begin{array}{lllllll}35.6845 \mathrm{~L} & 36.1 .8 \mathrm{~kL} & 37.4150 \mathrm{~L} & 38.6340 \mathrm{~L} & 39.6 .72 \mathrm{~kL} & 40.2960 \mathrm{~L} & 41.7 .15 \mathrm{~kL}\end{array}$ $\begin{array}{lllllll}\text { 42. } 465 \mathrm{~L} & 43.0 .756 \mathrm{~kL} & 44.4505 \mathrm{~mL} & 45.9 .685 \mathrm{~kL} & 46.4 .625 \mathrm{~L} & 47.856 \mathrm{~L} & 48.0 .865 \mathrm{~L}\end{array}$
49. 6450 L
50. 8742 mL
51. 6.53 L
52. 3.254 kL
53. 4350 mL
54. 3.495 L
55. 9655 L
56. 625 mL
57. 0.875L
58. 642 L
59. 0.732 kL

Task 12

1. $4700+1500=6200 \mathrm{~mL}$
2. $9.8-6.3=3.5 \mathrm{~kL}$
3. $5.4+2.24=7.64 \mathrm{~L}$
4. $9200-6400=2800 \mathrm{~L}$
5. $1600+5850=7450 \mathrm{~L}$
6. $2.73-1.9=0.83 \mathrm{~L}$
7. $4.85+6.42=11.27 \mathrm{~L}$
8. $7.195-5.3=1.895 \mathrm{~kL}$
9. $8100+6824=14924 \mathrm{~mL}$
10. $9252-6850=2402 \mathrm{~mL}$
11. $8700+1549=10249 \mathrm{~L}$
12. $6.95-6.6=0.35 \mathrm{~L} \quad$ 13. $0.856+6.2=7.056 \mathrm{~kL} \quad 14.6120-4400=1720 \mathrm{~mL}$
13. $6.45+2.765=9.215 \mathrm{~L}$
14. 5800 mL
15. 30 pots
16. 25 hours 19. 0.095 kL
17. 34 L of paint
18. $4 \times \$ 15.50=\$ 62.00,2 \times \$ 89.95=\$ 179.90,3 \times \$ 64.95=\$ 194.85$, Total $=\$ 436.75$
19. 0.56 L
20. 12.5 days
21. 50 days

Worksheet 10

Estimating and measuring with accuracy:

In Task 13, pupils are to use different measuring instruments to measure a selection of objects or conduct a measurement activity. Either the pupils or the teacher are to decide on the activities.

Example: The distance between two trees, the weight of a brick, the volume of a jar, etc.
The measuring instruments could include rulers, a dress maker's tape measure, a builder's tape measure, a 50 m measuring tape, bathroom and kitchen scales, old fashioned balance scales, various sized metric 'spoons', a measuring cylinder, baking utensils with scales, etc.
Pupils are to record an estimated length, weight or volume for each object or activity before completing the task by accurately performing the measurement task.

Worksheets 11 to 13

Finding the perimeter of a shape:

Word problems involving perimeter:

Finding the circumference of a circle:
In Task 14, pupils are to find the perimeter of various shapes, either by adding the sides given on a shape or by measuring the sides of a shape so that the perimeter can be calculated. A good way to describe perimeter is to imagine you are going to walk along the sides of a shape, until you are back where you started. The distance travelled would be the perimeter.
In Task 15, pupils are to find the perimeter of various items within the classroom or outside. Example: The perimeter of a desk top or of a tennis / basketball / netball court. This task will involve measuring, but pupils could use their hands or feet as 'measuring, instruments, if ruler and tape measures are not available.

In Task 16, pupils are to answer word problems of practical situations that involve finding the perimeter of various shapes.
In Task 17, pupils are introduced to the circumference of a circle, an alternative name for perimeter. By using string and a ruler, pupils are to attempt to find the relationship between the length of the circumference of a circle and the diameter of the same circle. From this, pupils are to come up with a rule, $C=$ approx. $3 \times d$, which can be used to find the circumference of a circle, given the diameter. If appropriate for your class, the concept of 'pi' could be introduced.

Task 14

1. 14 cm
2. 74 mm
3. 9.4 cm
4. 60.7 mm
5. 25 cm
6. 68 mm
7. 75 mm
8. 8.82 cm
9. $A B=50 \mathrm{~mm}, B C=23 \mathrm{~mm}, C D=33 \mathrm{~cm}, D E=23 \mathrm{~cm}, E F=17 \mathrm{~cm}, F A=46 \mathrm{~cm}: P=192 \mathrm{~mm}$
10. $A B=44 \mathrm{~mm}, B C=26 \mathrm{~mm}, C D=22 \mathrm{~mm}, D E=51 \mathrm{~mm}, E F=51 \mathrm{~mm}, F G=22 \mathrm{~mm}, G A=26 \mathrm{~mm}: P=242 \mathrm{~mm}$

Task 16

1. 1600 m
2. 1.6 km
3. 3200 m or 3.2 km
4. 3 laps
5. 190 m
6. $\$ 2850$
7. 5 m
8. 130 cm
9. 33 cents
10. 8.8 m
11. $\$ 9.50$
12. 200 cm or 2 m
13. 50 cents
14. 20 cm
15.
16.

Task 17

3. Circumference $=3.1 \times \mathrm{d}$
4. 62 cm
5. 139.5 mm
6. 5.89 cm
7. $45.26 m$
'If you can paint it, it has area':
Word problems involving area:
In Task 18, pupils are introduced to area by way of an estimation activity. Area is defined as the amount of surface a shape takes up and the saying 'If you can paint it, it has area' is a good way to think of area. Having established a rule for finding the area of squares and rectangles, pupils are to calculate areas without having to count squares.

In Task 19, pupils are to answer practical problems associated with area.

Task 18

1. 24 squares
2. 23 squares
3. 23 squares
4. 16 squares
5. 24 sq units
6. 20 sq units
7. 22 sq units
8. Area $=$ base \times height
9. $3.72 \mathrm{~cm}^{2}$
10. $275 \mathrm{~mm}^{2}$
11. $225 \mathrm{~m}^{2}$
12. $7.74 \mathrm{~cm}^{2}$
13. $A B=15 \mathrm{~mm}, B C=60 \mathrm{~mm}: A=900 \mathrm{~mm}^{2}$
14. $\mathrm{EF}=18 \mathrm{~mm}, 55 \mathrm{~mm}: \quad A=990 \mathrm{~mm}^{2}$
15. 4 cm
16. 9 mm

Task 19

1. $5500 \mathrm{~m}^{2}$
2. $4800 \mathrm{~cm}^{2}$
3. $180 \mathrm{~m}^{2}$
4. 12 litres
5. $\$ 194.85$
6. 0.8 m by 1.2 m
7. $0.96 \mathrm{~m}^{2}$
8. $5.76 \mathrm{~m}^{2}$
9. $\$ 112.32$
10. $1.6 \mathrm{~m}^{2}$
11. 14.4 metres
12. $\$ 180$
13. $30 \mathrm{~m}^{2}$
14. Room B
15. $15 \mathrm{~m}^{2}$
16. $12 \mathrm{~m}^{2}$
17. $81 \mathrm{~m}^{2}$
18. $\$ 8829$ 19. $15 \mathrm{~m}^{2} \quad 20 \$ 375$
'If you can fill it, it has volume':
Worksheets 15 \& 16

Finding the volume of an object:

In Task 20, pupils are introduced to volume by way of counting the number of cubes in a pile.
Volume can be described as the amount of space a 3D object takes up, or the amount of liquid a 3D object will hold. In the previous task, area of a square or rectangle is defined as ... A= bh. If a 2 D shape is extended in a third dimension, called depth, the volume of such a 3D object is defined as ... V = bhd.
In this task, pupils are to calculate the volume of an object, given the cross-sectional area of the end, and the depth.

In Task 21, pupils are to use the rule \ldots Volume $=$ base \times height \times depth, to calculate the volume of simple 3D objects. Practical problems involving volume are also included.

Task 20

1. 11 cubes
2. 11 cubes
3. $22.5 \mathrm{~cm}^{3}$
4. $10 \mathrm{~m}^{3}$
5. 18 cubes
6. 19 cubes
7. 6 sq units
8. $60 \mathrm{~cm}^{3}$
9. $90 \mathrm{~m}^{3}$

Task 21

1. $400 \mathrm{~cm}^{3}$
2. $18000 \mathrm{~mm}^{3}$
3. $6000 \mathrm{~m}^{3}$
4. $140000 \mathrm{~cm}^{3}$
5. $9 m^{3}$
6. $3150 \mathrm{~cm}^{3}$
7. $1575 \mathrm{~cm}^{3}$
8. $225 \mathrm{~m}^{3}$
9. 11.25 hours

Reading tables and charts:

Worksheet 18

In Task 22, pupils are to study information that has been presented in a table or a chart. An effective table or chart should display data in a clear and 'easy-to-read' way. Pupils are to collect tables and charts from the newspaper and make up questions relating to the information contained within the table or chart.

Task 22

1. 4 tablespoons
2. 6 cups
3. 50 mL
4. 1 tablespoon \& 1 dessertspoon
5. 0.9 km
6. $C \& D$
7. 1.6 km 8. 10 km 9. 9 points 10. Team B 11. Team C, as it has the most points, that is 10 points
8.

Team	Won	Drawn	Lost
A	3	0	1
B	1	1	2
C	2	2	0
D	2	0	2

Team $A=13 \mathrm{pts}$, Team $B=8 \mathrm{pts}$, Team $C=12 \mathrm{pts}$, Team $D=10$ pts
13. 1425 or $2: 25$ p.m. 14.1700 or $5: 00$ p.m. 15. 55 minutes 16 two planes 17. JS50 18. 1935 or 7:35 p.m.

Understanding and using scale diagrams:

Worksheet 19

In Task 23, pupils are to study scale diagrams. By measuring parts of the diagram and using the scale provided, the measured length can be converted to the actual length. Pupils are to create their own maps, with a scale, and exchange the maps with classmates so that he / she can work out distances between features on the map.

Task 23

1. 80 mm
2. 8 m
3. 45 mm
4. 9 m
5. 40 mm
6. 100 cm
7. -
8. $30 \mathrm{~mm}, 7.5 \mathrm{~km}$
9. $60 \mathrm{~mm}, 15 \mathrm{~km} \quad 10.55 \mathrm{~mm}, 13.75 \mathrm{~km}$
10. $35 \mathrm{~mm}, 8.75 \mathrm{~km}$
11. $50 \mathrm{~mm}, 12.5 \mathrm{~km}$
12. $80 \mathrm{~mm}, 20 \mathrm{~km}$

Measuring qualitative data:

Worksheet 20

In Task 24, pupils are to study graphs of qualitative data. Any data that refers to people's opinions, feelings, moods and behaviour etc, is know as qualitative data. Qualitative data is not that easy to graph and relies on a simple scale being created. Pupils are to create their own simple scales so that they can collect qualitative data about issues that are important to them.

Task 24

1. ok
2. 3:00 p.m.
3. very well
4. $0700,1200,1300$
5. ok
6. $1600 \& 1700$
7. 4 people
8. disappointing 9. $2=\mathrm{ok}, 3=$ good, $4=$ great
9. 21 people 11. sour and hot \& spicy 12. Food C 13. sour and mild 14. Food B

Understanding time units / Analogue \& digital time:

Converting between a.m / p.m. and 24hr time:

Measuring time:

Changes over time I calculating rates:

In Task 25, pupils are to revise the basic time units and convert between different time units. The ability to tell the time is an important skill, and pupils are to read and display time in analogue and digital form. This task is completed by pupils adding and subtracting mixed time units.
In Task 26, pupils are to convert between a.m. / p.m. time and 24 hr time and attempt questions associated with time. A series of word problems are also included.
In Task 27, pupils are to attempt an activity that can be timed using a stop watch or swipe hand of an analogue watch.

Task 28, pupils are to study graphs that have time on one axis Pupils are to attempt activities whereby something changes with time, such as temperature, growth of a plant etc. From the information collected, a graph is to be drawn.

Task 25

1. 240 sec
2. 420 min
3. 84 hrs 4. 77 days
4. 26 wks
5. 366 days
6. 7.5 min
7. 570 sec
8. 2.5 hrs
9. 12 days
10. 5.5 wks
11. 66.5 days 13.-
12. 20 past 9
13. 20 to 3
14. 5 to 2
15. 25 pas +12
16. 10 to 12
17.

24. $09: 20,02: 40,01: 55,12: 25,11: 50,05: 15,06: 50,11: 25,01: 55,10: 10 \quad 25.50+180=230 \mathrm{sec}$
26. $100-90=10 \mathrm{sec} \quad 27.2+4=6 \mathrm{~min} \quad 28.180-90=90 \mathrm{~min} \quad 29.3-1 \frac{1}{2}=1 \frac{1}{2} \mathrm{~min}$
30. $5-4=1 \mathrm{hr} \quad$ 31. $3.5+4.5=8 \mathrm{hrs} \quad 32.450-135=315 \mathrm{~min} \quad 33.48+15=63 \mathrm{hrs}$
34. $48-36=12 \mathrm{hrs} \quad 35.1 .5+4.5=6$ days $\quad 36.6-2.5=3.5$ days $\quad 37.2+2=4 \mathrm{wks}$
38. $56-24.5=31.5$ days 39. 5.5 wks

Task 26

1. $05: 17$
2. $16: 23$
3. $08: 15$
4. $21: 36$
5. $20: 47$
6. 09:53
7. 22:32
8. $03: 41$
9. $11: 32$
10. $01: 17$
11. $14: 57$
12. $10: 27$
13. 00:27
14. $18: 42$
15. 07:09
16. 12:04
17. 5:26 a.m.
18. $12: 14$ p.m.
19. 7:59 a.m.
20. 8:40 p.m.
21. 11:12 p.m.
22. 8:49 a.m.
23. 9:39 p.m.
24. 10:53 a.m. 25. 3:42 p.m. 26. 7:24 p.m. 27. 12:36 a.m. 28. 7:08 a.m. 29. 9:16 a.m.
25. 1:36 p.m. 31. 1:53 a.m.
26. 9:30 p.m.
27. 5:10 p.m.
28. 3 hrs 40 min
29. $60 \mathrm{~min}, 90 \mathrm{~min}, 50 \mathrm{~min} \quad 36$. no, as the total time for the 3 programmes was 200 min
30. 09:30-10:30, 14:15-15:45, 23:20-00:10
31. 35 min
32. 18:55, 20:25
33.

Depart	Arrive
8:50 a.m.	9:25 a.m.
9:20 a.m.	9:55 a.m.
11:40 a.m.	12:15 p.m.
6:20 p.m.	6:55 p.m.
7:50 p.m.	8:25 p.m.

Task 28

1. $\$ 100.80$
2. 5 hrs
3. 4200 times
4. 100800 times 5. - $6.40 \mathrm{~km} \quad 7.20 \mathrm{~km} / \mathrm{hr}$ 8. She did not ride during that hour $\quad 9.3 .33 \mathrm{~km} / \mathrm{hr} \quad 10.30 \mathrm{~km} \quad$ 11. $10 \mathrm{~km} / \mathrm{hr}$

Table of Contents for the Homework I Assessment Worksheet Masters for Measurement, Level 4

$\left.\begin{array}{|c|c|c|}\hline \begin{array}{c}\text { Worksheet } \\ \text { Number }\end{array} & \text { Topic } & \begin{array}{c}\text { Measurement } \\ \text { Objective(s) }\end{array} \\ \hline \mathbf{1} & \begin{array}{c}\text { Reading scales / Marking points on a scale / } \\ \text { Accuracy of measurement }\end{array} & \text { M1 } \\ \hline \mathbf{2} & \begin{array}{c}\text { Metric conversions / Word problems }\end{array} & \text { M1 } \\ \hline \mathbf{3} & \begin{array}{c}\text { Finding the perimeter / Word problems } \\ \text { / Finding the circumference }\end{array} & \text { M1 / M2 } \\ \hline \mathbf{4} & \text { Finding the area / Word problems } & \text { M2 } \\ \hline \mathbf{5} & \text { Finding the volume / Volume calculations } \\ \text { / Word problems }\end{array}\right]$

A: 10 'Quick Questions'

1. $36-6 \times 4+9=$
2. Convert 6524 mg to g
3. Convert 8:17 p.m. to 24 hr time
4. What would 9 books at \$5.95 each cost?
5. Name this shape
6. Find 20% of $\$ 48.70$
7. Calculate $\angle X$

$X=$

\qquad
8. List the factors of 18
9. $\quad 9.43 \times 0.5=$ \qquad
10. Solve the equation

$$
7 y-13=22
$$

$y=$

B: Metric conversions

Fill in the missing number or unit for these conversions.

1. $3 \mathrm{~cm}=$ \qquad mm
2. $2650 \mathrm{mg}=2.65$ \qquad
3. $15 \mathrm{~mm}=1.5$
4. $6.5 \mathrm{~kg}=$ 9
5. $7.8 \mathrm{~L}=$ \qquad mL
6. $895 \mathrm{~cm}=8.95$ \qquad
7. $8.2 \dagger=$ kg
8. $3585 \mathrm{~L}=3.585$
9. $8754 m=8.754$
10. $763 \mathrm{~mL}=$ \qquadL
11. $6.3 m=6300$
12. $4272 m=4.272$

C: Adding and subtracting mixed units
Answer in the unit indicated in the brackets. Both measurement units must be the same unit before adding or subtracting.

D: Word problems

David is building a shelving unit that has 8 wooden shelves all 135 cm long.

1. Calculate the total length of wood required. Give your answer in metres.

Jodie has a collection of several different shaped bottles.
2. If the capacity of five bottles was $9000 \mathrm{~mL}, 4.5 \mathrm{~L}, 1.5 \mathrm{~L}, 330 \mathrm{~mL}$ and 2000 mL , calculate the total volume of these bottles. Give your answer in litres.

A bakery buys flour in 50 kg sacks.
3. Calculate the weight of flour a bakery goes through if it buys 40 sacks of flour in six months. Answer in tonnes.
4. If a 50 kg sack costs $\$ 30.00$, how much has the bakery spent on flour?
5. If a small bread bun uses 400 g of flour, how many small buns can be made from a 50 kg sack of flour?

Jim runs laps around a local park each morning. The distance of each lap is 1200 m .
6. How many metres would Jim run, if he ran 3 laps? Give your answer in kilometres.
7. How many laps will he need to run to complete a distance of 6 km ?

Class:

Complete by:

A: 10 'Quick Questions'

1. $29-5 \times 4+11=$ \qquad
2. Convert 7.525 kL to L
3. Convert 7:49 a.m. to 24 hr time
4. What would 11 books at $\$ 6.35$ each cost?
5. Name this shape
6. Find $\frac{1}{4}$ of $\$ 48.76$
7. Calculate $\angle X$
$X=$ \qquad

8. List the factors of 15
9. $8.64 \times 0.5=$ \qquad
10. Solve the equation

$$
4(y-4)=20
$$

C: Word problems

A local park has sides of 450 m , of this shape.

$$
y=
$$ $530 \mathrm{~m}, 460 \mathrm{~m}$ and 660 m .

1. Calculate the perimeter of the park. Answer in metres
2. Convert your answer above to km .
3. How far is 5 laps around this park?
4. If Jim ran 12.6 km altogether, how many laps did he run?

Calculate the perimeter of these shapes.

2.

3.

Measure the sides of this shape below, to the nearest millimetre.

4.	$A B=$
5.	$B C=$
6.	$C D=$
7.	$D E=$
8.	EF =
9.	$F A=$

10. Use your answers to calculate the perimeter
11. A rectangle has a perimeter of 36 cm . If one side is 11 cm long, how long is the other side?

D: Finding the circumference

The circumference of a circle can be worked out using the rule

$C=$ \qquad $c=$ \qquad
The diameter of a tin lid is 15 cm .
3. Calculate the circumference of the tin lid.

ก1The diameter of a plate is 25 cm . 4. Calculate the circumference of the plate.

The diameter of a saucer is 160 mm .
5. Calculate the circumference of the saucer.

C: Word problems

A rugby field measures 110 m long and 50 m wide.

1. Calculate the total playing area.

A fence that is 60 m long and 1.8 m high is to be spray painted with two coats of paint.
2. Calculate the total area that is to be painted.

Give your answer in m^{2}.
3. If 1 litre of paint covers $12 \mathrm{~m}^{2}$ of the fence, how many litres of paint will be needed?

This diagram is of a small holiday house, which has two rooms and a deck.

4. Calculate the area of Room A.
5. Calculate the area of Room B.

Both rooms are to have new carpet laid at a cost of $\$ 65 / \mathrm{m}^{2}$.
6. Calculate the cost of the carpet.
7. Calculate the area of the deck.

The deck is made up of 15 lengths of wood, each 8 metres long.
8. If each strip of wood costs $\$ 2.25$ / metre, what is the total cost of the wood in the deck?

Comments:

Name:
A: 10 'Quick Questions'

1. $28-7 \times 3+9=$
2. Convert 56.2 cm to mm
3. Convert 0036 to a.m. / p. m. time
4. What would 11 books at \$14.95 each cost?
5. Name this shape
6. Find 75% of $\$ 96.00$
7. Calculate $\angle X$
$X=$ \qquad
8. List the first 5 multiples of 20
9. $13.76 \div 0.2=$ \qquad
10. Solve the equation

$$
1.2 y=60
$$

$y=$

Class:

B: Reading tables \& charts

This table shows the results for four teams in a netball competition.
Points are scored as follows ...
$\mathrm{Win}=4 \mathrm{pts}$, Draw $=2 \mathrm{pts}$, Loss $=1 \mathrm{pt}$

Complete by:

Team	Won	Drawn	Lost
A	6	0	4
B	5	1	4
C	4	1	5
D	4	2	4

1. Calculate the points scored by Team A.
2. Which team scored 23 points?
3. Calculate the points scored by Team D.
4. Rank the teams in order.
$1 s t=$ \qquad 2nd = \qquad $3 r d=$ \qquad

Christchurch to Wellington			
Day	Depart	Arrive	Flight
Wed	0715	0800	CW01
Wed	0820	0905	CW02
Wed	1545	1630	CW07
Wed	1730	1815	CW09

This table shows the flight times for planes flying between two cities.
5. Name the two cities.
6. What time does the earliest
flight depart?
7. What time does flight CW07 arrive in Wellington?
8. How long is flight CWO2?
9. If a flight departed at 11:50 a.m., at what time would it arrive in Wellington?
.........................

\qquad
\qquad

C: More tables \& charts

Jacqui prepared a chart to show the distances, measured in kilometres, between her house (A) and the houses of her friends. The letters B to E represent her friends' houses.

1. If Jacqui walks to house D, how far has she walked?
2. Which two houses are 3.6 km apart?
3. How far is it from house B to house C?
4.. How far is it from house E to house B?
4. Which two houses are the shortest distance apart?
5. Which two houses are the greatest distance apart?
6. Calculate the distance from houses A to D, then D to C, then C to E, then E to B and then back to house A.

D: Creating a timetable
Create a daily timetable for yourself in the space below.

Time	Activity

Complete by:

A: 10 'Quick Questions'

1. $12+5 \times 6-17=$
2. Convert 5625 m to km
3. Convert 12:15 a.m. to 24 hr time
4. What would 15 books at $\$ 2.45$ each cost?

Name this shape
6. Find $\frac{1}{2}$ of $\$ 49.50$
7. Calculate $\angle X$

$$
X=
$$

\qquad

B: Using scales / scale diagrams

For each scale diagram, use the scale that has been given to calculate the actual length.

1. Measured length of the car .mm
2. Actual length $=$ \qquad

3. Measured height of the tree mm
4. Actual height=

These dots represent towns. Use the scale to work out the actual distances between ...
5. Towns $A \& B=$
6. Towns $A \& C=$
7. Towns C\&D = \qquad
8. Draw a dot on the map for a town that is 7.5 km from Town B

C: Qualitative data

Graham has not been feeling very well. He recorded how he was feeling using the scale below.

1. How was Graham feeling at 12 o'clock?
feeling Quite well?
2. At what times during the day was he feeling 'Terrible'?

The points A, B, C and D represent how Jodie was feeling during a movie. Describe how she was feeling at ...
4. Point A : \qquad
5. Point B: \qquad
6. Point C :
7. Point D: \qquad

D: Mixed time units $\&$ word problems

Add and subtract these mixed time units.
Give your answer in the time unit given.

1. $50 \mathrm{sec}+3 \mathrm{~min}=$ \qquad sec
2. $3 \mathrm{~min}-90 \mathrm{sec}=$ min
3. $3 \frac{1}{2} \mathrm{hrs}+270 \mathrm{~min}=$ \qquad hrs
4. $48 \mathrm{hrs}-1 \frac{1}{2}$ days $=$ \qquad days
5. $2 w k s+14 d a y s=$ \qquad wks
On Monday, Geoff started a game of golf at 11:20 a.m. and played for 3 hrs 45 min .
6. At what time did Geoff finish playing golf? Give your answer in 24 hour time.

A weekly television programme starts at 1:25 p.m. and finishes at 2:10 p.m.
7. How long is this programme?
8. How many episodes of this programme could be taped on a 3 hour video tape?

E: Changes over time

A train travelling between two
cities 240 km apart takes 3 hours to make the journey.

1. What is the average speed of the train? km / hour
2. If the train travels at $100 \mathrm{~km} / \mathrm{hr}$, how far would it go in $5 \frac{1}{2}$ hours?

A 10 cm high plant, grows at a rate of $2 \mathrm{~cm} /$ day.
3. How high would the plant be in 3 days time?
4. How high would the plant be in 2 weeks time?
5. For how many days must the plant be growing, to add 18 cm to its height?
Jill works in a shop and is paid $\$ 8.50 / \mathrm{hr}$.
6. How much would she earn in 7 hours?
7. If she was paid $\$ 93.50$, for how many hours did she work?

Homework / Assessment Worksheet

Answers

Worksheet 1

A:

1. 11
2. 2.535 L
3. $11: 55$ p.m.
4. 14
5. pentagon
6. $\$ 4.87$
7. $200 \div 25=8$
8. $13,26,39,52,65$
9. 5.8 10. $\mathrm{y}=3$

B:

1. units are millimetres, the smallest division is $1 \mathrm{~mm}, A=4 \mathrm{~mm}, B=49 \mathrm{~mm}, C=23 \mathrm{~mm}, D=37 \mathrm{~mm}$
2. units are centimetres, the smallest division is $0.2 \mathrm{~cm}, A=5.0 \mathrm{~cm}, B=8.6 \mathrm{~cm}, C=11.2 \mathrm{~cm}, D=1.6 \mathrm{~cm}$
3. units are metres, the smallest division is $0.1 \mathrm{~m}, \quad A=5.3 \mathrm{~m}, \mathrm{~B}=2.3 \mathrm{~m}, \mathrm{C}=3.4 \mathrm{~m}, \mathrm{D}=0.8 \mathrm{~m}$
$C=$
4.

D:

Worksheet 2

A:

1. 21
2. 6.524 g
3. 2017
4. $\$ 53.55$
5. octagon
6. $\$ 9.74$
7. 33°
8. $1,2,3,6,9,18$
9. 4.715
10. $y=5$

B:

1. 30
2. cm
3. g
4. 6500
5. 7800
6. km
7. m
8. 0.763
9. 8200
10. mm
11. kL
12. km

C:

1. $250+624=874 \mathrm{~cm}$
2. $3.5-2.9=0.6 \mathrm{~L}$
3. $5600-4250=1350 \mathrm{~g}$
4. $89+59=148 \mathrm{~mm}$
5. $5.2+8.3=13.5 \mathrm{~kL}$
6. $4.56-2.75=1.81 \mathrm{~g}$
. $5600-4250=1350 \mathrm{~g}$
7. $2.5+6.24=8.74 \mathrm{~km}$
D:
8. 10.8 m
9. 17.33 L
10. 2 t
11. $\$ 1200$
12. 125 buns
13. 3.6 km
14. 5 laps

Worksheet 3

A:

1. 20
2. 7525 L
3. 0749
4. $\$ 69.85$
5. oval or ellipse
6. $\$ 12.19$
7. 27°
8. $1,3,5,15$
9. 4.32
10. $y=9$

B:

1. 9.4 cm
2. 61 mm
3. 45 mm
4. 17 mm
5. 25 mm
6. 45 mm
7. 45 mm
8. 15 mm
9. 16 mm
10. 163 mm
11. 7 cm
G:
12. 2100 m
13. 2.1 km
14. 10500 m or 10.5 km
15. 6 laps
16. 182 cm
D:
17. 3.72 cm
18. 62 mm
19. 46.5 cm
20. 77.5 cm
21. 496 mm

Worksheet 4

A:

1. 28
2. $5.625 t$
3. $11: 15$ p.m.
4. $\$ 97.20$
5. parallelogram
6. $\$ 36.60$
7. 102°
8. $15,30,45,60,75$
9. 53.2
10. $y=9$

B:

1. 24 sqs
2. 23 sqs
3. $16 \mathrm{~cm}^{2}$
4. $15 \mathrm{~cm}^{2}$
5. $3.72 \mathrm{~cm}^{2}$
6. $260 \mathrm{~mm}^{2}$
7. $225 \mathrm{~cm}^{2}$
8. $5500 \mathrm{~m}^{2}$
9. $216 \mathrm{~m}^{2}$
10. 18 L
11. $16 \mathrm{~m}^{2}$
12. $12 \mathrm{~m}^{2}$
13. $\$ 1820$
14. $14 \mathrm{~m}^{2}$
15. $8 \times \$ 2.25 \times 15=\$ 270$

Worksheet 5

A:

1. 17
2. 6585 mL
3. 1545
4. $\$ 69.85$
5. hexagon
6. $\$ 26.25$
7. 63°
8. 1, 3, 7, 21
9. 6.34
10. $y=3$

B:

1. 14 cubes
2. 15 cubes
3. $90 \mathrm{~cm}^{3}$
4. $240 \mathrm{~cm}^{3}$
C:
5. $648 \mathrm{~cm}^{3}$
6. $1400 \mathrm{~mm}^{3}$
D:
7. $6 \mathrm{~m}^{3}$
8. $4800 \mathrm{~cm}^{3}$
9. $1200 \mathrm{~cm}^{3}$
10. $512 \mathrm{~cm}^{3}$
11. $8000 \mathrm{~mm}^{3}$
12. 10 cm

Worksheet 6

A:

1. 16
2. 562 mm
3. $12: 36 \mathrm{a} . \mathrm{m}$.
4. $\$ 164.45$
5. square
6. $\$ 72$
7. 149°
8. $20,40,60,80,100$
9. 68.8
10. $y=50$

B:

1. 28 points 2. Team C \quad 3. 24 points 4. Team A, Team B, Team D, Team C
2. Christchurch and Wellington 6. 0715 or 7:15 a.m. 7. 1630 or 4:30 p.m. $\quad 8.45$ minutes $\quad 9.12: 35 \mathrm{p} . \mathrm{m}$. C:
3. 1.2 km
4. houses C \& D
5. 3.4 km
6. 1.7 km
7. houses D \& E
8. houses A \& E
9. $1.2+3.6+2.8+1.7+1.9=11.2 \mathrm{~km}$

Worksheet 7

A:

1. 25
2. 0015
3. $\$ 36.75 \quad$ 5. diamond or rhombus
4. $\$ 24.75$
5. 67°
6. $1,2,3,4,6,8,12,24$
7. 7.51
8. $y=60$

B:

1. 50 mm
2. 5 m
3. 35 mm
4. 7 m
5. 10 km
6. 7.5 km
7. 12.5 km

C:

1. ok 2. 4 times 3 3. $1000,1100,1500$ 4. Jodie was feeling very excited and happy 5 . Jodie was feeling very scared and a little bit sad 6 . Jodie was feeling sad and a little bit excited \quad 7. Jodie was neither sad nor happy, nor was she scared or excited

Worksheet 8

A:

1. 18 2. 0.869 m
2. $7: 36 \mathrm{p} . \mathrm{m}$.
3. $\$ 131.40$
4. right angled triangle
5. $\$ 32.52$
6. 126°
7. $17,34,51,68,85$
8. 71.8
9. $\mathrm{y}=80$

B:

1. $09: 20$
2. $4: 20$
3. $10: 45$
4. $7: 10$
5. $8: 40$
$\begin{array}{lll}\text { 7. quarter past } 2 & \text { 8. quarter to } 10 & 9 \text {. twenty-three to } 8\end{array}$ C:
6. 0340
7. $11: 07 \mathrm{a} . \mathrm{m}$.
8. $3: 45$ p.m.
9. 0638
10. 1410
11. 8:40 p.m. 7. 4:53 a.m.
12. 2106
13. 0340
14. $12: 37 \mathrm{a} . \mathrm{m}$.

D:

1. 230 sec
2. 1.5 min
3. 8 hrs
4. $1 / 2$ day
5. 4 wks
6. 1505
7. 45 min
8. 4 episodes
E:
9. $80 \mathrm{~km} / \mathrm{hr}$
10. 550 km
11. 16 cm
12. 24 cm
13. 9 days
14. $\$ 59.50$
15. 11 hrs

AWS

Tracking Sheet: 'In-class’ Activity Sheets

Tracking Sheet: Homework I Assessment Worksheets

