MATHLETIGS

Trigonometry and the Right-angled Triangle

Trigonometry and the right-angled triangle Student Book - Series J 2

Contents

Topics

Topic 1 - Naming the sides of a right-angled triangle
Topic 2 - The trigonometric ratios

Topic 3 - Use of a calculator in trigonometry

Topic 4 - Finding an unknown side
Topic 5 - Finding the hypotenuse
Topic 6 - Finding the unknown angle

Topic 7 - Exact trigonometric ratios
Topic 8 - Angle of elevation, angle of depression and bearings

Topic 9 - Problem solving involving two right-angled triangles

Date completed
\qquad
\qquad
\qquad
__/_/_
_/__/_
__/_/_
\qquad
\qquad
_/__/_

Practice Tests

Topic 1 - Topic test A
Topic 2 - Topic test B
\qquad
_/__/_

Author of The Topics and Topic Tests: AS Kalra

Trigonometry and the right-angled triangle

Topic 1 - Naming the sides of a right-angled triangle

Question 1 In each of the following triangles, state whether x, y and z are the opposite side, adjacent side or hypotenuse with reference to the angle marked.
a

b

C

$x=$ \qquad ,$y=$ \qquad , $z=$ \qquad
$x=$ \qquad , $y=$ \qquad , $z=$ \qquad
$x=$ \qquad ,$y=$ \qquad ,$z=$ \qquad
d

e

f

$x=$ \qquad $y=$ \qquad $z=$ \qquad
$x=$ \qquad $y=$ \qquad , $z=$ \qquad
$x=$ \qquad $=$
\qquad ,$z=$ \qquad

Question 2 Name the sides in the following right-angled triangles with reference to the angle marked.
a

b

$a=$ \qquad ,$b=$ \qquad ,$c=$ \qquad
$p=$ \qquad ,$q=$ \qquad ,$r=$ \qquad
,
c

$d=$ \qquad ,$e=$ \qquad ,$f=$ \qquad
d

e

f

$p=$ \qquad ,$q=$ \qquad , $r=$ \qquad
$a=$ \qquad ,$b=$ \qquad $c=$ \qquad
$l=$ \qquad , $m=$ \qquad , $n=$ \qquad

Question 3 Name the hypotenuse in each triangle given below.
a

b

C

Trigonometry and the right-angled triangle

Topic 2 - The trigonometric ratios

Question 1 Write the trigonometric ratios for the following triangles.
a

b

c

\qquad
e

f

d

\qquad

Question 2 Find $\sin \theta, \cos \theta$ and $\tan \theta$ in the following triangles.

a

b

c

d

e

f

Question 3 Use Pythagoras' theorem to find the unknown side and then find $\sin \theta, \cos \theta$ and $\tan \theta$.
a

b

c

Trigonometry and the right-angled triangle

Topic 3 - Use of a calculator in trigonometry

Question 1 Find the value of the following correct to three decimal places.

Question 2 Find the value of the following correct to three significant figures.

\qquad
\qquad
g $\sin 59^{\circ} 28^{\prime}=$
$\tan 31^{\circ} 49^{\prime}=$ \qquad

Question 3 Find the value of the following correct to two decimal places.
a $\frac{\tan 58^{\circ}}{6}=$ \qquad
b $\quad \frac{\cos 63^{\circ}}{5}=$
c $\frac{14.3}{\sin 54^{\circ}}=$
d $\frac{\sin 39^{\circ} 41^{\prime}}{4.7}=$ \qquad e $\frac{\sin 54^{\circ} 28^{\prime}}{2.5}=$ \qquad f $\frac{18.6}{\cos 37^{\circ} 15^{\prime}}=$
\qquad
g $\frac{\tan 25^{\circ} 54^{\prime}}{8.25}=$ \qquad h $\frac{\tan 38^{\circ} 29^{\prime}}{8.6}=$
i $\frac{359}{\tan 75^{\circ} 36^{\prime}}=$ \qquad

Question $4 \quad A$ is an acute angle. Find its size to the nearest degree.
a $\quad \sin A=0.5736$ \qquad
b $\quad \tan A=0.7836$ \qquad c $\quad \cos A=0.8126$ \qquad
d $\cos A=0.5990$ \qquad
e $\quad \sin A=0.7587$ \qquad
f $\quad \tan A=1.491$ \qquad
g $\quad \tan A=2.5583$ \qquad
h $\quad \cos A=0.2935$ \qquad
i $\quad \sin A=0.9941$ \qquad

Question $5 \quad A$ is an acute angle. Find its size in degrees and minutes.
a $\quad \sin A=0.5$ \qquad
d $\cos A=0.4836$ \qquad
b $\quad \cos A=0.3568$ \qquad c $\quad \tan A=1.326$ \qquad
e $\quad \tan A=0.7983$ \qquad
f $\quad \sin A=0.4839$ \qquad

Question 6 Find the size of the acute angle in degrees and minutes.
a $\quad \cos A=\frac{1}{2}$ \qquad b $\quad \sin A=\frac{13}{18}$
c $\quad \tan A=\frac{15.7}{12.85}$
d $\quad \tan A=\frac{15}{22}$ \qquad
e $\quad \cos A=\frac{8.5}{11.9}$ \qquad
f $\quad \sin A=\frac{1.732}{2}$
\qquad
\qquad

Trigonometry and the right-angled triangle

Topic 4 - Finding an unknown side

Question 1 Find the value of the unknown side correct to one decimal place.
a

b

c

\qquad

Question 2 Find the value of x in the following triangles, correct to three decimal places.
a

b

C

b
\longrightarrow
\qquad

Question 3 Find the value of the pronumeral correct to two decimal places.
a

b

c

\qquad
d

\qquad
e

f

Question 4 Michelle is flying a kite on a 55 metre string that makes an angle of 56° with the horizontal. Calculate the height of the kite to the nearest metre.
\qquad
\qquad
\qquad

Question 5 In $\triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}, \angle \mathrm{B}=34.5^{\circ}$ and $\mathrm{BC}=3.6 \mathrm{~cm}$. Find AB .

Trigonometry and the right-angled triangle

Topic 5 - Finding the hypotenuse

Question 1 Find the length of the hypotenuse correct to one decimal place.
a

\qquad
b

c

\qquad
\qquad

Question 2 Find the length of the hypotenuse correct to one decimal place.
a

b

C

Question 3 Find the length of the hypotenuse correct to one decimal place.
\qquad
\qquad
\qquad
a

b

c

\qquad
f

d
\qquad
e

\qquad

Question 4 The diagram shown opposite is a trapezium with $D C$ parallel to $A B$. Calculate the length of $B D$ and $A B$.
\qquad
\qquad

Question 5 Find the length of the diagonal of a rectangle if the length of the rectangle is 10.7 cm
and the diagonal makes an angle of 30° with the longer side.

Trigonometry and the right-angled triangle

Topic 6 - Finding the unknown angle

Question 1 Find the size of the angle marked with a pronumeral correct to the nearest minute.
a

b

c

Question 2 Find the size of the angle marked.
b

c

\qquad
a

\qquad
\qquad
\qquad

Question 3 Find the size of the angle marked.
a

b

Trigonometry and the right-angled triangle

Topic 7 - Exact trigonometric ratios

Question 1 Evaluate the following using the exact values of the trigonometric ratios.
\qquad
d $\cos 60^{\circ}=$ \qquad
b $\sin 60^{\circ}=$ \qquad c $\quad \sin 30^{\circ} \cdot \cos 45^{\circ}=$ \qquad
e $\quad \cos 45^{\circ}=$ \qquad f $\quad \sin 45^{\circ} \cdot \cos 45^{\circ}=$ \qquad
g $\sin 45^{\circ}=$ \qquad h $\tan 60^{\circ}=$ \qquad i $\quad \cos 30^{\circ}=$ \qquad
j $\tan 30^{\circ}=$
k $\quad \sin 30^{\circ} \cdot \cos 60^{\circ}=$ \qquad $1 \tan 45^{\circ}=$ \qquad
m $\frac{\sin 45^{\circ}}{\cos 45^{\circ}}=$ \qquad n $\frac{\sin 30^{\circ}}{\cos 30^{\circ}}=$ \qquad - $\frac{\sin 60^{\circ}}{\tan 60^{\circ}}=$ \qquad
p $\frac{\cos 30^{\circ}}{\cos 60^{\circ}}=$ \qquad
r $\frac{\sin 30^{\circ}}{\sin 60^{\circ}}=$ \qquad

Question 2 Prove the following relationships.
a $\frac{\sin 30^{\circ}}{\cos 30^{\circ}}=\tan 30^{\circ}$
b $\frac{\sin 45^{\circ}}{\cos 45^{\circ}}=\tan 45^{\circ}$
c $\frac{\sin 60^{\circ}}{\cos 60^{\circ}}=\tan 60^{\circ}$
\qquad
\qquad
d $2 \sin 30^{\circ} \cos 30^{\circ}=\sin 60^{\circ}$
f $\quad 2 \sin 60^{\circ} \cos 60^{\circ}=\sin 120^{\circ}$
\qquad
\qquad
\qquad
e $\quad 2 \sin 45^{\circ} \cos 45^{\circ}=\sin 90^{\circ}$
\qquad
\qquad
\qquad
\qquad
\qquad

Question 3 Prove the following results.
a $\sin 30^{\circ} \times \cos 60^{\circ}=\frac{1}{4}$ \qquad b $\quad \sin 60^{\circ}+\cos 30^{\circ}=\sqrt{3}$ \qquad
\qquad
c $\sin 30^{\circ}+\cos 30^{\circ}+\cos 45^{\circ}=\frac{1+\sqrt{3}+\sqrt{2}}{2}$ \qquad

Question 4 A 12 m ladder standing on level ground makes an angle of 60° with the ground. How far up the vertical wall does it reach?
\qquad
\qquad
\qquad

Trigonometry and the right-angled triangle

Topic 8 - Angle of elevation, angle of depression and bearings

Question 1

a The angle of elevation of the top of a tower AB is 58° from a point C on the ground at a distance of 200 metres from the base of the tower. Calculate the height of the tower to the nearest metre.

b A man 1.65 m tall is 18 metres away from a tower 25 m high. What is the angle of elevation of the top of the tower from his eyes?
\qquad
\qquad
\qquad
c From the top of a building 80 metres high, the angle of depression of a car parked on the ground is 52°. Find the distance of the car from the base of the building. (Write your answer correct to two decimal places.)
\qquad
\qquad
\qquad

Question 2

a A ship sets out from a point A and sails due north to a point B, a distance of 150 km . It then sails due east to a point C . If the bearing of C from A is $048^{\circ} 37^{\prime}$, find:
i the distance BC.
ii the distance AC.
\qquad
\qquad
b A ship leaves port for a destination 80 km east and 70 km north. In which direction should it sail?
\qquad
\qquad
\qquad
c A ship starts from a port P, sails $\mathrm{S} 46^{\circ} \mathrm{W}$ for a distance of 120 km . Find:
i how far south of P it is.
ii how far west of P it is.

Trigonometry and the right-angled triangle

Topic 9 - Problem solving involving two right-angled triangles

Question 1 From the diagram given opposite, find:
a the length of side AB.
\qquad
\qquad
b the length of side CD.
c the angle $D A C$.

\qquad
\qquad

Question 2 In the diagram given opposite, calculate:
a the length a (correct to one decimal place).
\qquad
\qquad
b the size of angle θ.
c the length b.

\qquad
\qquad
\qquad

Question 3 Find the value of the unknowns in the given diagram.

\qquad

Question 4 The angle of elevation of the top of a cliff from a boat 600 m out to sea is 37°. If the boat then travels a further d metres out to sea, the angle of elevation of the cliff is now 25°. Find:

a the height of the cliff above sea level to the nearest metre.
b the value of d to the nearest metre.
\qquad
\qquad
\qquad
\qquad
\qquad

Trigonometry and the right-angled triangle Topic Test

Instructions This part consists of 10 multiple-choice questions
 Each question is worth 1 mark
 Attempt ALL questions
 Calculators are NOT to be used
 Fill in only ONE CIRCLE for each question

Time allowed: 15 minutes
Total marks $\mathbf{= 1 0}$

1 Use your calculator to find $\sin 36^{\circ}$ correct to two decimal places.
(A) 0.58
(B) 0.57
(C) 0.59
(D) 0.81

2 Evaluate $12 \sin 85^{\circ}$ correct to two decimal places.
(A) 12.05
(B) 11.95
(C) 1.05
(D) 137.16

3 Find the value of $\frac{\sin 38^{\circ}-\cos 55^{\circ}}{\tan 36^{\circ}}$ correct to one decimal place.
(A) 0.2
(B) 0.5
(C) 0.05
(D) 0.1

4 If $\sin \theta=\frac{4}{7}$, calculate the size of the angle θ to the nearest degree.
(A) 55°
(B) 30°
(C) 35°
(D) 45°

5 A 3 metre ladder leans against a building with its top reaching a height of
2.6 metres. What angle, to the nearest degree, does the ladder make with the wall?
(A) 35°
(B) 40°
(C) 30°
(D) None of these

6 In the triangle $A B C$, the angle B is $90^{\circ}, A B$ is 4 m and $A C$ is 5 m . Find the size of angle A correct to the nearest degree.
(A) 37°
(B) 53°
(C) 39°
(D) 27°

7 Jane is flying a kite on a 100 m string that makes an angle of 48° with the horizontal. How high is the kite above Jane's hand? Give your answer correct to the nearest metre.
(A) 65 m
(B) 82 m
(C) 78 m
(D) 74 m

8 The diagonal of a rectangle makes an angle of 42° with one of the longer sides. If the length of the rectangle is 12 cm , find the length of the diagonal correct to one decimal place.
(A) 15.8 m
(B) 22.5 m
(C) 16.1 m
(D) 17.9 m

9 From the top of a tower the angle of depression of a boat is 30°. If the tower is 20 m high, how far is the boat from the foot of the tower?
(A) 40 m
(B) $10 \sqrt{3} \mathrm{~m}$
(C) $20 \sqrt{2} \mathrm{~m}$
(D) $20 \sqrt{3} \mathrm{~m}$

10 If $\cos \theta=\frac{1}{2}$, find the size of angle θ.
(A) 30°
(B) 60°
(C) 45°
(D) 55°

Trigonometry and the right-angled triangle Topic Test

Instructions This part consists of 15 questions
Each question is worth 1 mark
Attempt ALL questions
Calculators may be used

Time allowed: 20 minutes

Total marks $=15$

Questions

Use your calculator to find correct to two decimal places:
$1 \tan 58^{\circ}$.
$2 \sin 63^{\circ}$.
$319.7 \cos 78^{\circ}$.
$4 \quad \frac{28.67}{\sin 46^{\circ}}$.
$5 \frac{\sin 35^{\circ}+\cos 35^{\circ}}{\tan 34^{\circ}}$.
$6 \tan 48^{\circ}-\sin 30^{\circ}+\cos 73^{\circ}$
Calculate the size of each angle to the nearest degree if:
$7 \cos \theta=\frac{4}{5}$.
$8 \sin \theta=\frac{12}{13}$.
$9 \tan \theta=0.6781$.
For the triangle ABC given opposite, calculate:
10 the value of h.
11 the size of $\angle \mathrm{A}$.

12 the length of $B C$.
From the diagram given opposite find:
13 the length of the side $A B$.
14 the length of the side $C D$.
15 the angle DAC.

Answers only \quad Marks
\qquad
\qquad
\qquad
\qquad
\square
\qquad

