

sinθ cosθ

Mathletics Instant Workbooks

Copyright © 3P 🔊 Learning

Trigonometry Student Book - Series J

Contents

Topics Topics	Date completed
Topic 1 - Naming the sides of a right-angled triangle	//
Topic 2 - The sine ratio	_/_/_
Topic 3 - The cosine ratio	_/_/_
Topic 4 - The tangent ratio	_/_/_
Topic 5 - Use of a calculator in trigonometry	_/_/_
Topic 6 - Finding an unknown side	_/_/_
Topic 7 - Finding the hypotenuse	_/_/_
Topic 8 - Finding an unknown angle	_/_/_
Topic 9 - Angles of elevation and depression	_/_/_
Practice Tests	
Topic 1 - Topic test A	_/_/_
Topic 2 - Topic test B	_/_/_

Author of The Topics and Topic Tests: AS Kalra

Topic 1: Naming the sides of a right-angled triangle

QUESTION **1** In each of the following triangles, state whether x, y and z are the opposite side, adjacent side or hypotenuse, with reference to the angle marked.

a

b

c

QUESTION **2** Name each side of the following triangles as opposite (opp), adjacent (adj) or hypotenuse (hyp), with reference to the angle marked.

a

h

c

d

e

f

QUESTION **3** Name the hypotenuse in each triangle.

a

h

c

d

e

Í

<u>Trigonometry</u>

Topic 2: The sine ratio

QUESTION 1 Find the value of sin A in each triangle as a fraction in its simplest form. All lengths are in millimetres.

sin A = _____

sin A = ____

c

sin A = ____

QUESTION 2 For each triangle, find $\sin \theta$ and $\sin \alpha$. All lengths are in millimetres.

 $\sin \theta =$ $\sin \alpha =$

 $\sin \theta =$ $\sin \alpha =$

 $\sin \theta =$ $\sin \alpha = \underline{\hspace{1cm}}$

Use Pythagoras' theorem to calculate the unknown side of each triangle and then find $\sin \theta$.

a

c

QUESTION 4 Write each sine ratio in its simplest form.

a

sin B = _____

sin P = _____ sin Q = _____

sin D = _____ sin E =

QUESTION **5** Name the angle of each triangle that has the given sine ratio.

 $=\frac{8}{17}$ ______

$$\sin \boxed{} = \frac{15}{17}$$

sin	_ =	<u>40</u>	
		50	

$$\sin \square = \frac{3}{\sqrt{34}}$$

Topic 3: The cosine ratio

QUESTION 1 Find the value of cos A in each triangle as a fraction in its simplest form. All lengths are in millimetres.

a

cos A = _____

cos A = ____

QUESTION **2** For each triangle, find $\cos \theta$ and $\cos \alpha$. All lengths are in millimetres.

a

 $\cos \theta =$ $\cos \alpha =$

 $\cos \theta =$

QUESTION **3** Use Pythagoras' theorem to calculate the unknown side and then find $\cos \theta$.

a

QUESTION 4 Write each cosine ratio in its simplest form.

a

cos B = _____ cos E = _____

cos A = _____ cos D = ____

cos P = _____

QUESTION **5** Name the angle of each triangle that has the given cosine ratio.

a

 $\cos \square = \frac{4}{5}$

 $\cos \square = \frac{8}{17} - \dots$

 $\cos \square = \frac{15}{17}$ $\cos \square = \frac{12}{13}$

Topic 4: The tangent ratio

QUESTION **1** Find the value of tan A in each triangle as a fraction in its simplest form. All lengths are in millimetres.

a

tan A = ____

b

tan A = _____

c

tan A = _____

QUESTION **2** For each triangle, find $\tan \theta$ and $\tan \alpha$. All lengths are in millimetres.

a

 $\tan \theta =$

b

 $\tan \theta =$ ______ $\tan \alpha =$ _____

c

 $\tan \theta =$ ______

QUESTION **3** Use Pythagoras' theorem to find the unknown side and then find tan θ .

a

b

 \mathbf{c}

QUESTION **4** Write each tangent ratio in its simplest form.

a

h

c

tan A = _____

tan D = _____ tan E = _____

tan P = _____ tan Q = ____

QUESTION **5** Name the angle of each triangle that has the given tangent ratio.

a

b

C

 $\tan \square = \frac{60}{11}$

 $\tan \Box = \frac{11}{60}$

 $\tan \Box = \frac{30}{40} -$

 $\tan \Box = \frac{40}{30}$

 $\tan \square = \frac{25}{60}$

 $\tan \boxed{} = \frac{60}{25}$

Topic 5: Use of a calculator in trigonometry

Find the value of the following correct to two decimal places.

a
$$\sin 34^{\circ} =$$

b
$$\tan 70^{\circ} =$$

d
$$\cos 59^{\circ} =$$

e
$$\cos 40^{\circ} =$$

h
$$\sin 30^{\circ} =$$

QUESTION **2** Find the value of the following correct to three decimal places.

$$a \frac{\sin 35^{\circ}}{2} =$$

$$\mathbf{b} = \frac{\cos 64^{\circ}}{8} = \underline{\hspace{1cm}}$$

$$\mathbf{d} = \frac{\cos 38^{\circ} 42'}{2.5} = \underline{}$$

$$\frac{\cos 38^{\circ}42'}{2.5} =$$
 e $\frac{\sin 29^{\circ}43'}{8.4} =$ **...**

$$\frac{20.5}{\sin 53^{\circ}27'} =$$

$$\frac{g}{7.25} = \frac{\tan 29^{\circ}18'}{1}$$

$$\frac{\tan 29^{\circ}18'}{7\cdot25} =$$
_______ **h** $\frac{\tan 68^{\circ}25'}{7\cdot1} =$ ______

$$\frac{829}{\tan 28^{\circ}15'} =$$

QUESTION 3 Find the value of the following correct to three significant figures.

a
$$3.9 \tan 23^{\circ} =$$

$$c \cos 35^{\circ}29' =$$

$$\mathbf{e} \quad \sin 25^{\circ} 19' = \qquad \qquad \mathbf{f}$$

$$\mathbf{g}$$
 cos 61°38' = _____

h
$$8.4 \cos 65^{\circ}23' =$$
 i

A is an acute angle. Find its size to the nearest degree. QUESTION 4

a
$$\sin A = 0.6325$$
 b

$$\cos A = 0.3787$$
 _____ **c**

$$\tan A = 2.538$$

d
$$\cos A = 0.5783$$
 _______ **e**

$$\tan A = 0.7938$$
 _____ **f**

$$\sin A = 0.7613$$

$$\mathbf{g}$$
 tan A = 1.6928 _____ **h**

$$\sin A = 0.2831$$
 ______ i

$$\cos A = 0.9852$$

QUESTION **5** A is an acute angle. Find its size to the nearest degree.

a
$$\sin A = 0.5$$

$$\tan A = 0.5832$$
 _____ **c**

$$\sin A = 0.7681$$

d
$$\cos A = 0.3876$$

e
$$\cos A = 0.5$$

$$\tan A = 2.1075$$

QUESTION **6** Find the size of the acute angle B to the nearest degree.

a
$$\tan B = \frac{16}{23}$$

$$\cos B = \frac{5}{13}$$

$$\tan B = \frac{16}{23}$$
 b $\cos B = \frac{5}{13}$ **c** $\sin B = \frac{8 \cdot 3}{14 \cdot 5}$

d
$$\sin B = \frac{1}{2}$$

e
$$\tan B = \frac{8}{9}$$

$$\sin B = \frac{1}{2}$$
 e $\tan B = \frac{8}{9}$ **f** $\cos B = \frac{11 \cdot 3}{14 \cdot 8}$

Topic 6: Finding an unknown side

QUESTION **1** Find the value of the unknown side correct to one decimal place.

a

b

c

QUESTION **2** Find the value of the pronumeral in the following triangles correct to two decimal places.

a

b

c

QUESTION **3** Find the value of the pronumeral correct to two decimal places.

a

b

c

d

f

QUESTION 4 A piece of wood 2.5 m long leans against a vertical wall, making an angle of 51° with the floor. How far up the wall, to the nearest centimetre, is the top of the wooden piece?

QUESTION **5** In $\triangle PQR$, $\angle R = 90^{\circ}$, $\angle P = 48^{\circ}$ and PQ = 8.6 cm, find PR correct to two decimal places.

Topic 7: Finding the hypotenuse

QUESTION **1** Find the length of the hypotenuse correct to one decimal place.

a

b

 \mathbf{c}

QUESTION **2** Find the length of the hypotenuse correct to two decimal places.

a

h

c

QUESTION **3** Find the length of the hypotenuse correct to one decimal place.

a

b

c

d

P

f

QUESTION **4** Find the value of x.

_

QUESTION **5** In $\triangle ABC$, $\angle A = 90^{\circ}$, $\angle B = 58^{\circ}$ and AB = 23 m, find BC correct to the nearest metre.

Topic 8: Finding an unknown angle

QUESTION **1** Find the size of the angle marked with pronumeral to the nearest degree.

a

b

(

QUESTION **2** Find the size of the angle marked to the nearest degree.

a

b

 \mathbf{c}

QUESTION **3** Find the size of the angle marked to the nearest degree.

a

b

c

d

f

QUESTION 4 In $\triangle PQR$, $\angle R = 90^{\circ}$, QR = 8.2 cm and PR = 6.7 cm, find $\angle P$ to the nearest degree.

QUESTION **5** ABCD is a rectangle with AC = 24 cm and AD = 10 cm. Find $\angle ACD$ correct to the nearest degree.

Topic 9: Angles of elevation and depression

QUESTION 1

a The angle of elevation of the top of a tower AB is 62° from a point C on the ground 300 m from the middle of the base of the tower. Calculate the height

of the tower to the nearest metre.

b From the top of a building 90 m tall, the angle of depression of a car parked on the ground is 48°. Find the distance of the car from the base of the building. Write your answer correct to two decimal places.

c A railway track rises uniformly 8.5 m for every 300 m along the track. Find the angle of elevation of this track to the nearest degree.

QUESTION 2

From a point on the ground 20 m from the base of a tree, the angle of elevation of the top of the tree is 53°. Find the height of the tree to the nearest metre.

b A building that is 45 m tall casts a horizontal shadow 32·3 m long. Find the angle of

elevation of the sun to the nearest degree.

c Anna is 1.70 m tall and is 25 metres away from a building 38 m high. What is the angle of elevation of the top of the building from her eyes? Answer to the nearest

degree.____

Topic Test PART A

Time allowed: 15 minutes **Total marks = 15**

						Total marks ac	hiev	ed for PART A	
	(A)	40°	_	32°	©	33°	①	none of these	
15	Find	the size of the acute	ang	le θ to the nearest deg	gree	if $\tan \theta = \frac{12.5}{19.34}$			
	A	0.02		0.03	©	0.04	①	0.05	
14	Evalu	the unit $\frac{\sin 54^{\circ}}{28.65}$ correct	to tw	o decimal places.					
13	Use y	your calculator to fir 3.58	_	9 cos 63° correct to the 3.59	$\overline{}$	significant figures. 7.03	①	7.04	
14	A	9 cm	_	15·1 cm	$\overline{}$	12.8 cm	e. D	none of these	
12	(A) Find	1° the hypotenuse of the	B)	2°	(C)	3° ect to 1 decimal place	(I)	4° 8 cm	
11		correct to the neares		•	ng th	ne road. Find the angl	le of		1
	neare (A)	est degree. 36°	$^{\odot}$	39°	©	53°	①	37°	1
10	In a △ABC, the angle B is 90°, AB is 8 m and AC is 10 m. Find the size of angle A correct to the								
9	Find (A)	the size of angle θ t 40°	o the	e nearest degree.	©	42°	①	58° 10-23	
8		three sides of a right tenuse is 8 cm	-ang	led triangle measure 15 cm	(C)	m, 17 cm and 8 cm. T	the le	ength of the 25 cm	1
	(A)	29°5'	B	28°39'	©	29°39'	(D)	28°5'	1
7	A	30° ² 5° equals	$^{\odot}$	45°	©	60°	①	72°	
6	If cos	s $\theta = \frac{1}{2}$, find the size	of a	ngle θ .					
5	The l	hypotenuse of a right 1 cm	t-ang	gled triangle is 41 cm 9 cm	. If c	one side is 40 cm, the 10 cm	third	d side is 81 cm	
	A	31°	$^{\odot}$	32°	©	33°	①	34°	
4	If sin	$\theta = \frac{5}{9}$, calculate the	size	of angle θ to the near	rest	degree.			
	(A)	0.01	_	0.02	©	0.03	①	0.0196	1
3	Find	the value of $\frac{\cos 32^{\circ}}{\cos 32^{\circ}}$	cori	rect to two decimal pl	laces		Ū		
2	Evalu	uate 25 tan 63° corre	ect to	two decimal places. 49.07	(C)	29.38	(D)	22.28	1
1	Use y	your calculator to fir 0·74	nd co	os 48° correct to two of 1.11	decir C	nal places. 0·67	①	none of these	
	**	1 1		400		1 1			Marks

Topic Test PART B

Time allowed: 15 minutes

Total marks = 15

Marks

1

1

1

1

Question 1

a Find the value of each expression correct to two decimal places.

$$\frac{i}{8.93} = \frac{\cos 72^{\circ}}{8.93} = \frac{\cos 72^{\circ}}{\cos 72^{\circ}}$$

$$\frac{34.20}{\sin 56^{\circ}} =$$

b Find acute angle A to the nearest degree.

$$i \sin A = 0.6835$$

ii
$$\tan A = 1.4862$$

Question 2 Find the value of the pronumeral in each triangle correct to two decimal places.

- **a** Find the length of one side correct to the nearest mm.
- **b** Find the size of $\angle BDC$.

Find the following correct to three decimal places.

tan ∠ABD

Total marks achieved for PART B