Area of a parallelogram

WALT Investigate and learn about the formula of a parallelogram Success Criteria I know from the investigation parallelogram is a stretched rectangle. I use height instead of the width of this shape.

You have tried two investigations in the triangle area now its time for the third one

Investigation 3 Area of a parallelogram

One way to find the area of a shape is to divide the shape into a number of unit squares and count the squares.
1 Consider the parallelogram shown. By counting the squares determine the area of the parallelogram.

2 Now consider this diagram.
a What shape is formed when part A is removed and relocated?
b What do you now notice about the area of the new shape and the original shape?

3 Using the terms 'base' and 'height', develop a formula
 to determine the area of a parallelogram.

In Investigation 3 you developed a rule to find the area of a parallelogram. The area of a parallelogram is:

$$
\begin{aligned}
\text { Area } & =\text { base } \times \text { height } \\
A & =b h
\end{aligned}
$$

EXAMPLE 1

Find the areas of the following parallelograms.
a

a $A=b h$
$=8 \times 3=24 \mathrm{~cm}^{2}$

c

b $A=b h$
$=12 \times 7=84 \mathrm{~mm}^{2}$
c $A=b h$
$=5.2 \times 13.6=70.72 \mathrm{~m}^{2}$

Time to work on the area of a parallelogram

1 Complete the following to find the areas of these parallelograms.
a

b

$$
A=b h
$$

$$
=\ldots \times 6=\ldots \mathrm{m}^{2}
$$

c

$A=b h$
$=12 \times \ldots=$ cm^{2}
$A=b h$
$=\ldots \times \ldots=100 \mathrm{~mm}^{2}$

2 Find the areas of the following parallelograms.
a

b

c

d

e

f

g

i

k

1

Challenge

3 Find the area of each parallelogram with the dimensions given.
a $b=14 \mathrm{~cm}, h=10 \mathrm{~cm}$
b $b=15 \mathrm{~m}, h=8 \mathrm{~m}$
c $b=7 \mathrm{~cm}, h=13 \mathrm{~cm}$
d $b=21 \mathrm{~mm}, h=12 \mathrm{~mm}$
e $b=9 \mathrm{~m}, h=30 \mathrm{~m}$
f $b=4.1 \mathrm{~cm}, h=5 \mathrm{~cm}$
g $b=9 \mathrm{~cm}, h=2.1 \mathrm{~cm}$
h $b=8.5 \mathrm{~m}, h=7.2 \mathrm{~m}$
i $b=2.7 \mathrm{~m}, h=9.3 \mathrm{~m}$
j $b=12.4 \mathrm{~m}, h=8.6 \mathrm{~m}$

EXAMPLE 2

Find the areas of the following shapes.

a This shape is made up of a
triangle and a parallelogram.
$A=A_{1}+A_{2}$
$=\frac{1}{2} b h+b h$
$=\frac{1}{2}(5 \times 4)+(10 \times 4)$
$=10+40$
$=50 \mathrm{~m}^{2}$
b The shape is made up of a rectangle and a parallelogram.
$A=A_{1}+A_{2}$
$=l b+b h$
$=(12 \times 3)+(12 \times 7)$
$=36+84$
$=120 \mathrm{~cm}^{2}$

4 Complete the following to find the area of these composite shapes.
a

$=$ parallelogram + \qquad

$$
=(14 \times \ldots)+\frac{1}{2}(
$$

\qquad $+$ m^{2}
b

3 cm
$A=A_{1}+A_{2}$
$=$ square + \qquad
$=s^{2}+$ \qquad
$=ـ^{2}+($ $\times \ldots$)
$+$
cm^{2}

Find the area of the following composite shapes.
a

b

c

d

Extension

Investigation 4 Making rectangles

Many plane shapes can be made into rectangles. This gives a method of finding their areas.

1 Step 1: Copy and cut out each of the following shapes.

Step 2: Cut along the dotted line(s) and arrange the pieces to make each shape into a rectangle.
Step 3: Find the area of each rectangle and hence the area of each original shape.
2 Draw your own rhombus, isosceles trapezium, kite and parallelogram and find their areas.

Investigation 5 How many possibilities are there?

Consider the examples shown below.
1 Determine the area of each shape. What do you notice?
a

b

c

2 On grid paper, show the number of ways you could make shapes of the following area.
a 18 units 2
b 20 units 2
c 36 units 2

Check your answers

$\begin{aligned} & 1 \text { a } 12 \times 9=1 \\ & \text { c } 20 \times 5=1 \end{aligned}$	$\mathrm{cm}^{2} \quad$ b 6	b $6 \times 11=66 \mathrm{~m}^{2}$
2 a $68 \mathrm{~cm}^{2}$	b $96 \mathrm{~m}^{2}$	c $26 \mathrm{~mm}^{2}$
d $45 \mathrm{~cm}^{2}$	e $517 \mathrm{~mm}^{2}$	f $24.8 \mathrm{~m}^{2}$
g $32.2 \mathrm{~m}^{2}$	h $90.2 \mathrm{~mm}^{2}$	i $123 \mathrm{~cm}^{2}$
j $46.5 \mathrm{~cm}^{2}$	k $284 \mathrm{~m}^{2}$	$1107.3 \mathrm{~mm}^{2}$
3 a $140 \mathrm{~cm}^{2}$	b $120 \mathrm{~m}^{2}$	c $91 \mathrm{~cm}^{2}$
d $252 \mathrm{~mm}^{2}$	e $270 \mathrm{~m}^{2}$	f $20.5 \mathrm{~cm}^{2}$
g $18.9 \mathrm{~cm}^{2}$	h $61.2 \mathrm{~m}^{2}$	i $25.11 \mathrm{~m}^{2}$
j $106.64 \mathrm{~m}^{2}$		
4 a triangle, $b h+\frac{1}{2} b h$		
$=14 \times 10+\frac{1}{2} \times 6 \times 10$		
$=140+30=170 \mathrm{~m}^{2}$		
b parallelogram, $s^{2}+b h$		
$=3^{2}+3 \times 17$		
$=9+51=60 \mathrm{~cm}^{2}$		
5 a $330 \mathrm{~cm}^{2}$		
c $525.78 \mathrm{~m}^{2}$		

