Area of a parallelogram

WALT Investigate and learn about the formula of a parallelogram **Success Criteria** I know from the investigation parallelogram is a stretched rectangle. I use height instead of the width of this shape.

You have tried two investigations in the triangle area now its time for the third one

Investigation 3 Area of a parallelogram

One way to find the area of a shape is to divide the shape into a number of unit squares and count the squares.

1 Consider the parallelogram shown. By counting the squares determine the area of the parallelogram.

- 2 Now consider this diagram.
 - **a** What shape is formed when part A is removed and relocated?
 - **b** What do you now notice about the area of the new shape and the original shape?
- **3** Using the terms 'base' and 'height', develop a formula to determine the area of a parallelogram.

In Investigation 3 you developed a rule to find the area of a parallelogram. The area of a parallelogram is:

Area = base
$$\times$$
 height $A = bh$

Time to work on the area of a parallelogram

Challenge

- a b = 14 cm, h = 10 cm
- b = 7 cm, h = 13 cm
- e b = 9 m, h = 30 m
- b = 9 cm, h = 2.1 cm
- b = 2.7 m, h = 9.3 m

- **b** b = 15 m, h = 8 m
- **d** b = 21 mm, h = 12 mm
- b = 4.1 cm, h = 5 cm
- **h** b = 8.5 m, h = 7.2 m
- b = 12.4 m, h = 8.6 m

EXAMPLE 2

Find the areas of the following shapes.

a This shape is made up of a triangle and a parallelogram.

$$A = A_1 + A_2$$
=\frac{1}{2}bh + bh
=\frac{1}{2}(5 \times 4) + (10 \times 4)
= 10 + 40
= 50 m²

b The shape is made up of a rectangle and a parallelogram.

$$A = A_1 + A_2$$
= $lb + bh$
= $(12 \times 3) + (12 \times 7)$
= $36 + 84$
= 120 cm^2

$$A = A_1 + A_2$$
= parallelogram + _____

$$= (14 \times \underline{\hspace{1cm}}) + \frac{1}{2}(\underline{\hspace{1cm}} \times 10)$$

$$+\frac{1}{2}(_{--}\times 10)$$

$$=$$
 ___ + __
 $=$ ___ m^2

$$A = A_1 + A_2$$

= square + _____
= s^2 + ____
= s^2 + (___×__)

5 Find the area of the following composite shapes.

d

Extension

Investigation 4 Making rectangles

Many plane shapes can be made into rectangles. This gives a method of finding their areas.

An isosceles trapezium has both non-parallel sides equal in length.

1 Step 1: Copy and cut out each of the following shapes.

- Step 2: Cut along the dotted line(s) and arrange the pieces to make each shape into a rectangle.
- Step 3: Find the area of each rectangle and hence the area of each original shape.
- 2 Draw your own rhombus, isosceles trapezium, kite and parallelogram and find their areas.

Investigation 5 How many possibilities are there?

Consider the examples shown below.

1 Determine the area of each shape. What do you notice?

- 2 On grid paper, show the number of ways you could make shapes of the following area.
 - a 18 units²
- **b** 20 units²
- c 36 units²

Check your answers

1 a
$$12 \times 9 = 108 \text{ cm}^2$$

b $6 \times 11 = 66 \text{ m}^2$
c $20 \times 5 = 100 \text{ mm}^2$

3 a
$$140 \text{ cm}^2$$
 b 120 m^2 c 91 cm^2

4 a triangle,
$$bh + \frac{1}{2}bh$$

$$= 14 \times 10 + \frac{1}{2} \times 6 \times 10$$

$$= 140 + 30 = 170 \text{ m}^2$$

b parallelogram,
$$s^2 + bh$$

$$= 3^2 + 3 \times 17$$

$$= 9 + 51 = 60 \text{ cm}^2$$