## WALT Identify sides of a right angle triangle Success Criteria - I can identify hypotenuse and read the sign theta I am able to list the rules for Sine, Cosine and Tangent





**3** Complete this table for  $\theta$  for each of the triangles in question 1.

| opposite | opposite   | adjacent   |  |
|----------|------------|------------|--|
| adjacent | hypotenuse | hypotenuse |  |
|          |            |            |  |

## The trigonometric ratios

The ratios from Example 2 are given names.

• The ratio  $\frac{opposite}{adjacent}$  is the **tangent** of the angle marked  $\theta$ .

This is written as 
$$tan \theta = \frac{opposite}{adjacent}$$
.

• The ratio  $\frac{opposite}{hypotenuse}$  is the **sine** of the angle marked  $\theta$ .

This is written as 
$$\sin \theta = \frac{opposite}{hypotenuse}$$
.

• The ratio  $\frac{\text{adjacent}}{\text{hypotenuse}}$  is the cosine of the angle marked  $\theta$ .

This is written as 
$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$
.



The trigonometric ratios can be remembered using a mnemonic: SOH CAH TOA.

$$\begin{aligned} \textbf{SOH} & \textbf{Sin}\,\theta = \frac{\textbf{Opposite}}{\textbf{Hypotenuse}} \\ \textbf{CAH} & \textbf{Cos}\,\theta = \frac{\textbf{Adjacent}}{\textbf{Hypotenuse}} \\ \textbf{TOA} & \textbf{Tan}\,\theta = \frac{\textbf{Opposite}}{\textbf{Adjacent}} \end{aligned}$$



## **EXAMPLE 3**

In triangle ABC, find expressions for tan  $\theta$ , cos  $\theta$ , and sin  $\theta$ .



| Solve                         | Think                                                     | Apply                                                        |  |  |
|-------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|--|--|
| $\tan \theta = \frac{BC}{AC}$ | $\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$   | Locate the hypotenuse opposite the right angle. Identify the |  |  |
| $\sin\theta = \frac{BC}{AB}$  | $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$ | opposite and adjacent sides relative to the chosen angle.    |  |  |
| $\cos\theta = \frac{AC}{AB}$  | $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$ |                                                              |  |  |



## Check your answers



| <b>a</b> <i>b</i> | b                               | a                                     | c a                    |     | <b>d</b> <i>b</i>                   |  |
|-------------------|---------------------------------|---------------------------------------|------------------------|-----|-------------------------------------|--|
| 3                 | opposit<br>adjacen              |                                       | opposite<br>hypotenuse |     | adjacent<br>hypotenuse              |  |
| a                 | $\frac{BC}{AC}$                 | $\frac{BC}{AC}$ $\frac{BC}{AB}$       |                        |     | $\frac{AC}{AB}$                     |  |
| b                 | $\frac{PR}{PQ}$                 |                                       | $\frac{PR}{RQ}$        |     | $\frac{AC}{AB}$ $\frac{PQ}{RQ}$     |  |
| c                 | $\frac{XY}{ZY}$                 |                                       | $\frac{XY}{XZ}$        |     | $\frac{ZY}{XZ}$                     |  |
| d                 | $\frac{p}{q}$                   |                                       | $\frac{p}{r}$          |     | $\frac{q}{r}$                       |  |
| e                 | $\frac{m}{l}$                   |                                       | $\frac{m}{n}$          |     | $\frac{l}{n}$                       |  |
| f                 | $\frac{ED}{FD}$                 |                                       | $\frac{ED}{EF}$        |     | $\frac{FD}{EF}$                     |  |
| g                 | $\frac{x}{z}$                   |                                       | $\frac{x}{y}$          |     | $\frac{z}{y}$                       |  |
| h                 | $\frac{TV}{UT}$                 |                                       | $\frac{TV}{UV}$        |     | $rac{UT}{UV}$                      |  |
| i                 | $\frac{SU}{ST}$                 |                                       | $rac{SU}{TU}$         |     | $\frac{UT}{UV}$ $\frac{ST}{TU}$     |  |
| j                 | $\frac{h}{k}$                   |                                       | $\frac{h}{g}$          |     | $\frac{k}{g}$                       |  |
| k                 | $\frac{u}{w}$                   |                                       | $\frac{u}{v}$          |     | $\frac{w}{v}$                       |  |
| 1                 | $\frac{k}{l}$                   |                                       | $\frac{k}{m}$          |     | $\frac{l}{m}$                       |  |
| a i               | $\frac{UT}{TS}$                 | ii $\frac{UT}{US}$                    |                        | iii | $\frac{TS}{US}$                     |  |
| b i               | $\frac{ED}{DF}$                 | ii $\frac{UT}{US}$ ii $\frac{ED}{EF}$ |                        | iii | $\frac{TS}{US}$ $\frac{DF}{EF}$     |  |
| c i               | $\frac{MN}{ML}$                 | ii $\frac{MN}{LN}$                    |                        |     | $\frac{LM}{LN}$                     |  |
| d i               | $\frac{a}{b}$                   | ii $\frac{a}{c}$                      |                        | iii |                                     |  |
| e i               |                                 | ii $\frac{t}{u}$                      |                        | iii | NEDV.                               |  |
|                   | $\frac{x}{z}$                   | ii $\frac{x}{y}$                      |                        | iii | 3:                                  |  |
|                   | $\frac{XY}{XZ}$                 |                                       |                        |     | ii $\frac{XZ}{YZ}$ ii $\frac{j}{i}$ |  |
| h i               | $\frac{h}{j}$                   | ii $\frac{h}{i}$                      |                        |     |                                     |  |
| i i               | $\frac{RT}{ST}$ $\frac{BC}{CA}$ | ii $\frac{RS}{RS}$                    |                        | iii | ST<br>RS<br>CB                      |  |
| a i               | CA<br>TV                        | ii $\frac{DA}{AC}$                    |                        |     | CB<br>BA<br>TV                      |  |
|                   | $\frac{TV}{AV}$                 |                                       |                        |     | TV<br>TA<br>PR                      |  |
| c i               | $\frac{PR}{AP}$                 | ii $\frac{AR}{AP}$                    |                        | iii | $\frac{PR}{AR}$                     |  |