

2021 Course

Teachers expectations:

-Safety first (Listen - Understand - act)

- Arrive to class on time.
- Work hard. Do not waste your time.
- Complete and hand in assignments on time
- Show respect and care for the school equipment, students and teachers

House Keeping

- Get to know the location of DGT resources: tools, equipments and electronic components that you are going to use in your DGT sessions.
- Know the pack-up procedure.
- Component storage is behind left side whiteboard students do not access this unless they have teachers permission

Digital Technology In NZC

- What is digital technology?

"The digital curriculum is about teaching children how to design their
own digital solutions and become creators of, not just users of, digital technologies, to prepare them for
the modern workforce."
Chris Hipkins, 2018 国

The New Zealand Curriculum

In the Technology Learning area there are two new technological areas:
Computational thinking for digital technologies - Students will develop an understanding of computer science principles that underlie all digital technologies. They'll learn core programming concepts so that they can become creators of digital technology, not just users.

Technology

Designing and developing digital outcomes - Students will learn how to design quality, fit-for-purpose digital solutions.

Understanding of Computational Thinking

Computational thinking is about looking at a problem in a way that a computer can help us to solve it. It is not thinking about computers or like computers.

CAS Barefoot

Our brain vs computer brain... Who wins?

Task 1 - Computational Thinking

Use the grid below, write a set of instructions for the monkey to follow to collect the fruits on it's way to the tree. use "up", "down", "left" and "right".

-	-			-			
							1
				-			
	Ob						
						*	3

Now use the computer - Software

- Using your own device, Open Scratch:
https://scratch.mit.edu/projects/472147465
Now write a set of logical instructions commands for the monkey to follow to collect the fruit on it's way to the tree.

Computational Thinking Binary Digits

Watch these videos:

- How computers work - Binary and Data https://www.youtube.com/watch?v=USCBCmw MCDA
- Understanding binary numbers: https://www.youtube.com/watch?v=FrsgHUSZ_ pc

Task-2: Binary coding

- Using only 2 digits 1 and 0, convert letters to numbers and these numbers to binary and should contain five bits only. (Google classroom)

Binary coding Task

1- Fill the table below with a binary code using only 2 digits 1 and 0 . You need to convert the numbers to binary. The code should contain only five bits.

Base 10	Binary	Alphabet	Base 10	Binary	Alphabet	Base 10	Binary	Alphabet
0			9		I	18		R
1		A	10		J	19		S
2		B	11		K	20		T
3		C	12		L	21		U
4		D	13		M	22		V
5		E	14		N	23		W
6		F	15		0	24		X
7		G	16		P	25		Y
8		H	17		Q	26		Z

2- Write your name using binary code:

My name in binary code is:

3- Write a short message to another student using binary code and let the student figurel it out.

BYOD

Each student must have a device
Software and websites:
1- Begin by finding website - Technology Student bookmark this page.
http://www.technologystudent.com/index.htm
Then click on electronics

2-Visit Tinkercad website for circuit drawing and simulation.
https://www.tinkercad.com/things/aAnI5KczKhu-sizzling-waasa/editel?tena nt=circuits

Electronic components and their symbols

- http://www.technologystudent.com/elec1/compn 1.htm
- http://www.technologystudent.com/elec1/compn 2.htm
- http://www.technologystudent.com/elec1/compn 3.htm

Visit google classroom for your electronic symbols activity

Batteries, LEDs and simple circuit

http://www.technologystudent.com/elec1/battery1. htm

Resistors

- http://www.technologystudent.com/elec1/resist1 .htm

Breadboards

- http://www.technologystudent.com/elec1/bread1 .htm

The multimeter

- Measures the following:
- Voltage (V) in volts Resistance (R) in ohms Ω
- Current (I) in amps
- Transistors polarity (PNP, NPN)
- Continuity circuits

Lets start with a simple electric circuit

- Click to watch
https://www.youtube.com/watch?v=VnnpLaKsqGU\&t=75s

Our first circuit project

1	Project container / box
As required	Solder
As required	Copper tape
2	470 Resistor
2	10k Resistor
1	LE Resistor
3	LDR
1	Transistors (BC337)
2	10 k potentiometer
2	100uF Electrolytic Capacitor
2	

The LEDs

For their first circuit, making an LED light up, you will need to be able to attach your components to the circuits.

Notes:

- LED's are very sensitive to being 'wired' the wrong way round and having too much current.
- A 'protective resistor' is used to limit the current flowing through (much like a restrictor in you shower to reduce the amount of water being used).
- If you use different batteries then the protective resistors need to change.


```
3v = 100 \Omega
4.5v = 270\Omega
9v = 470 \Omega
```


Using the LED

LED's are polarised, you have to get them the right way round. They really don't like the current being put in the wrong way!
To make things easier, mark the cathode (the one pointing to Ov or ground with a marker pen. It then looks like a negative symbol

When you first pick up a 5 mm LED you will notice that the legs are a different length. This makes it easier to distinguish which one

Cathode (-) Short Lead
Anode (+) Long Lead points to the positive (anode) and which one points to the zero volts (cathode).

Unfortunately for us, we're going to cut the legs to equal length shortly. But..... Luckily, looking closely at the 'rim' at the bottom of the plastic you will see a small flat spot. That denotes the cathode (points to the OV) side of the LED.

Teachwithict.com

Using the multimeter

1- Measuring voltage across a battery

2- Measuring Resistance

3- Measuring Continuity Circuit

Basic Circuit Measurements

Follow the instructions on these slides to build your breadboard circuits, make the measurements and answer the questions

- You can work together to make measurements using the multimeter, but you must answer the questions individually

Build the basic circuit on Tinkercad layout and then on a breadboard as per the photo shown here as a guide (use a multimeter set to Ω to measure the resistor value)

- two hook-up wires are used for the switch, to enable the circuit to remain on the switch wires can be plugged into a common row as shown

Task 1:

With your switch wires connected together and LED on, set your multimeter to measure voltage (DC -)

Measure the voltage across the LED
Measure the voltage across the 470 ohm resistor \quad Voltage $=$
Measure the voltage across the +ve and -ve rails (the battery voltage)
Voltage =
Add the voltage of the LED and resistor together Voltage total $=$
Deduct the voltage total of the led/resistor from the battery voltage
The total voltage of the led/resistor should equal the battery voltage (within a few millivolts) does it?

If not, give a brief explanation of why this may be

Soldering Irons

Everything about soldering:
https://www.makerspaces.com/how-to-solder/

Safe use of soldering irons

- Safety glasses MUST be worn when soldering.
- Soldering irons are hot and can burn badly. Nylon clothing can stick to the skin if heated.
- Solder can 'spit'. It is unlikely but it can happen - You MUST wear safety glasses.
- Fumes - Don't breathe them in, you won't get high, just sick! It is flux, the cleaning agent you are breathing in. Use a well ventilated area.
- Don't chew the solder! It's REALLY not good for you!
- Cleanliness is everything - make sure everything is clean.
- Tin the soldering iron tip - this makes the heat transfer much more efficient

Soldering time

- draw a picture (track layout) of the circuit. As close to scale as possible.

- stick on the copper tape and make the switch.

- All joints need to be tinned first. Then components are added

Parallel and Series Circuits

- Qsaentibtefallhenfiontbaincgitsirasitsgūiinkgercad: hitibiker. Gad.d.com/things/6pCm4c0kQol-surprising-hango/editel?tenant=circuits

LED Circuit In Parallel

What happens when you press the switch? Three LED's?
Measure the voltage across the resistor and the LED's
What happens when you remove one LED?

Soldering Time

LED Circuit In Series

What happens when you press the switch? Three LED's?

Measure the voltage across the resistor and each of the LED's
Compare the total to the supply from the battery.
Why are the LEDs so dim or not even alight?
What happens if you swap from blue to red LED's?.
What happens when you remove one LED?

Soldering Time

Unit of measurements

Symbol	Name	Numeral	
	One		
		1.0	

Unit Of Measurements

\mathbf{T}	Terrra	$1,000,000,000,000.0$
\mathbf{G}	Giga	$1,000,000,000.0$
\mathbf{M}	Mega	$1,000,000.0$
\mathbf{K}	Kilo	$1,000.0$
\mathbf{m}	milli	1.0
$\boldsymbol{\mu}$	micro	0.001
\mathbf{n}	nano	0.000001
\mathbf{p}	pico	0.000000000001

Transistor as aswich

Transistor - LDR Circuit

Construct this circuit $+9 v$ and simulate using:

- Tinkercad
- Bread board
- Copper tape on cardboard

Using potentiometer - variable resistor

- Replace the 1 K resistor with Potentiometer

Capacitors

https://www.technologystudent.com/elec1/capac1. htm

Transistor - Capacitor Circuit

Draw the circuit using Tinkercad circuits and then assemble on your breadboard. When done... Use the copper tape, components and soldering to make it.

