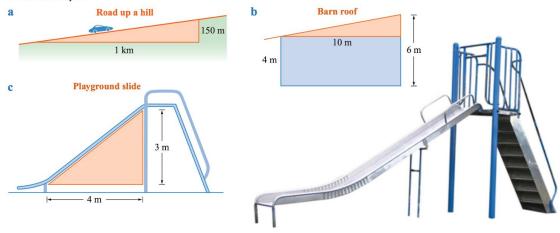
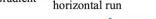

Slope (gradient)

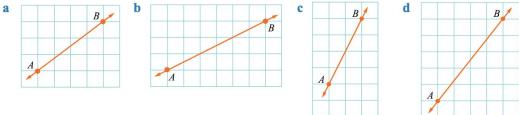
WALT Calculate slope of a line

Success Criteria I can count the way lines go/move up/down (rise) and go/move across (run)



When line segments are drawn on graph paper, we can determine the slope of the line segments by drawing horizontal and vertical lines to complete a right-angled triangle.




Its time to try

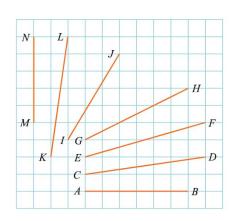
1 Find these slopes.

2 In each diagram, draw a right-angled triangle and find the gradient using: vertical rise horizontal run Gradient =

Find the gradient of the line passing through points C(-4, -2) and D(3, 2).

Solve	Think	Apply
$\begin{array}{c} y \\ 3 \\ 2 \\ -4 \\ -3 \\ -4 \\ -4 \\ -3 \\ -2 \\ -4 \\ -4 \\ -3 \\ -2 \\ -4 \\ -4 \\ -3 \\ -2 \\ -4 \\ -3 \\ -2 \\ -4 \\ -4 \\ -3 \\ -2 \\ -4 \\ -4 \\ -3 \\ -2 \\ -4 \\ -4 \\ -3 \\ -2 \\ -4 \\ -4 \\ -3 \\ -2 \\ -4 \\ -4 \\ -3 \\ -2 \\ -4 \\ -4 \\ -2 \\ -4 \\ -2 \\ -4 \\ -2 \\ -4 \\ -2 \\ -4 \\ -2 \\ -4 \\ -2 \\ -4 \\ -2 \\ -4 \\ -2 \\ -2$	Complete a right-angled triangle using <i>CD</i> as the hypotenuse. Then vertical rise = 4 and horizontal run = 7, so gradient = $\frac{4}{7}$.	Complete a right-angled triangle using <i>CD</i> as the hypotenuse. Determine the vertical rise and horizontal run from <i>C</i> to <i>D</i> and calculate the gradient. Gradient $= \frac{\text{rise}}{\text{run}}$

- **3** Find the gradient of the line passing through each pair of points.
 - **a** C(-5, -2) and D(4, 5)
 - c C(-5, 3) and P(7, 7)


b A(-3, -1) and B(5, 2)

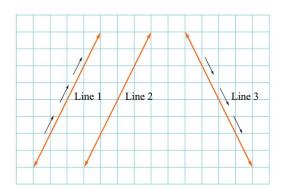
d M(1, -5) and N(2, 6)

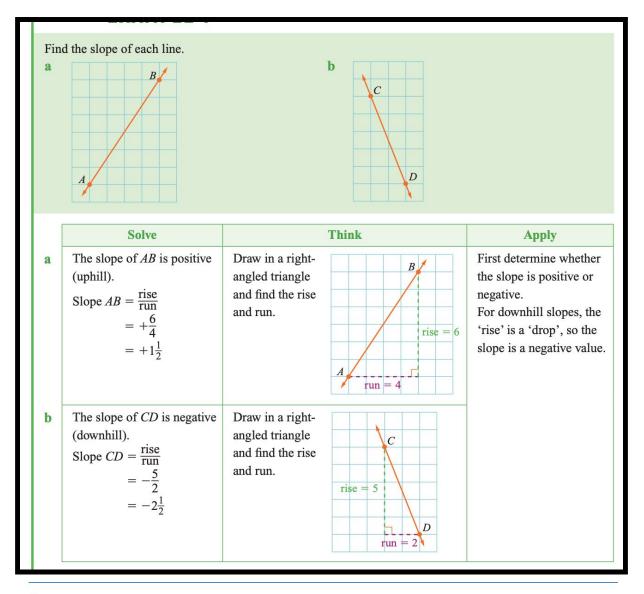
Investigation 2 Varying the slope

1 Complete the table.

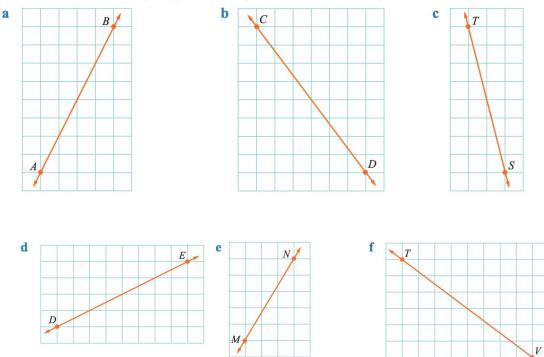
Line segment	<i>x</i> -run	y-rise	Slope
AB			
CD			
EF			
GH			
IJ			
KL			
MN			

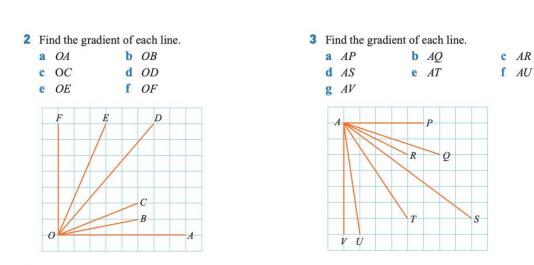
- **2** Complete the following.
 - a The slope of a horizontal line is _____
 - **b** The slope of a vertical line is _____
 - c As the line segments become steeper, their slopes _____

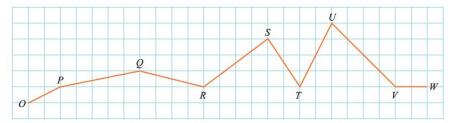

Positive and negative gradients


In the diagram, lines 1 and 2 are parallel, and have the same slope of 2.

Line 3 is not parallel to lines 1 and 2, yet it has the same degree of steepness.

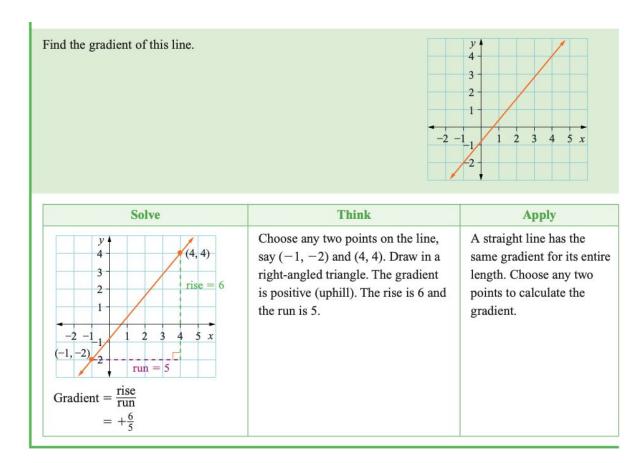

We say that lines 1 and 2 are **forwards sloping**, whereas line 3 is **backwards sloping**.


As we go from *left to right*, on line 1 we are going *uphill* and the slope (gradient) is **positive**, whereas on line 3 we are going *downhill* and the slope (gradient) is **negative**.

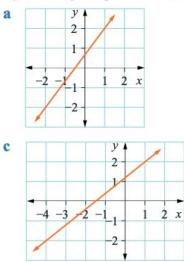


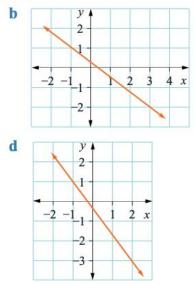
1 Determine whether the slope is positive or negative and then find the gradient.

4 Imagine you are walking across the countryside from O to W (from left to right).

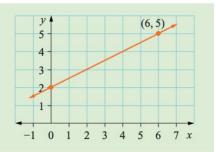

- When are you going uphill? a
- b When are you going downhill?
- c Where is the steepest positive slope?
- d Where is the steepest negative slope?
- e Where is the slope 0?
- **f** Where is the slope not zero but least?

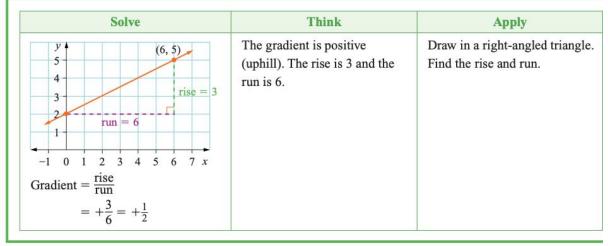
Plot points A(-3, 5) and B(7, 2) and find the gradient of the line passing through them.

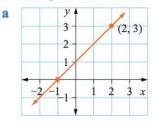

Solve	Think	Apply
rise = $\frac{y}{4}$ -3 -2 -1 0 1 2 3 4 5 6 7 x Gradient = $\frac{rise}{run}$ $= -\frac{3}{10}$	From the right-angled triangle, the slope is downhill, so the rise is -3 and the run is 10.	Plot the points, and draw a right-angled triangle. Find the rise and run. The gradient is negative (downhill).

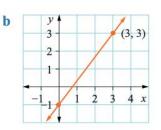

5 Plot each pair of points and find the gradient of the line passing through them.

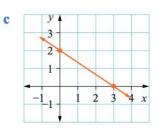
- **a** A(-4, 6) and B(7, 2)**b** C(-4, -1) and D(5, 3)**c** P(1, 3) and Q(-4, -1)**d** R(0, 0) and S(5, 3)**e** M(5, 3) and N(-5, 2)**f** S(-3, -2) and T(4, -6)

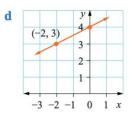


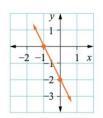

6 By choosing two points on each line, find the gradients.

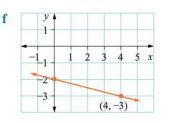


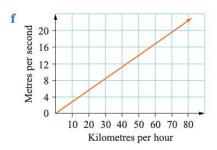

Find the gradient of the given line.

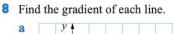


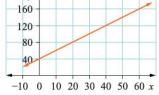


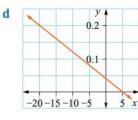

7 Find the gradients of these lines.

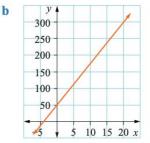


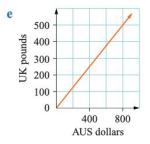


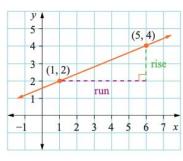

e









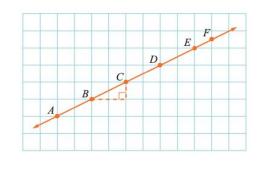


Investigation 3 Formula for gradient

The gradient has been found by drawing a right-angled triangle and finding the vertical rise and horizontal run.

Gradient = $\frac{\text{rise}}{\text{run}}$

- **1** a Find values for the vertical rise and horizontal run as shown in the triangle on this graph.
 - **b** Calculate the gradient.


- 2 a Copy this diagram. y y **b** Draw in the triangle as shown B y_2 on the right-hand diagram. (x_{2}, y_{2}) $(y_2 - y_1)$ A y1 -A (x_1, y_1) $(x_2 - x_1)$ x_1 x x_2 x
 - c If A is (x_1, y_1) and B is (x_2, y_2) then from the diagram:
 - rise = $y_2 y_1$
 - $run = x_2 x_1$
 - the vertical rise from A to B is $y_2 y_1$ (the difference between the y-coordinates)
 - the horizontal run from A to B is $x_2 x_1$ (the difference between the x-coordinates).
 - d The symbol for gradient is *m*. Complete the following.

$$m = \frac{y_2 - \Box}{\Box - \Box}$$

Investigation 4 The slope of a line

1 Complete the table.

Line segment	<i>x</i> -run	y-rise	<i>y</i> -rise <i>x</i> -run
BC	2	1	$\frac{1}{2}$
DE			
AC			
BE			
AE			
AF			

2 State, in sentence form, any conclusions you can draw from the graph and table.

Investigation 5 Relating gradient and the tangent ratio

- **1** Plot points A(1, 2) and B(5, 9).
- 2 Draw a right-angled triangle and write the lengths of the horizontal and vertical sides.
- **3** Find the gradient of *AB*.
- **4** Label the angle at A as θ .
- 5 With respect to θ , label the sides as opposite, adjacent and hypotenuse.
- **6** Write an expression for tan θ.
- 7 Compare $\tan \theta$ and the gradient.
- 8 Explain the result from question 7.
- **9** Calculate the size of the angle that the line makes with the x-axis.
- 10 Calculate the angles for the gradients of the line joining the points in Exercise 10D question 5.
- 11 Copy and complete the following. The gradient of a line is equal to θ , where θ is the angle made by the line and the _____ axis.