Monday 17th Agust 20

Walt complete the table to values by viewing a graph **Success criteria** I can identify coordinates and the y-intercept. The rate of increase is the value that can guide me to the equation.

6 Complete a table of values and find the equation of each of these lines.

a

b

C

d

e

I

g

h

i

Extension

Investigation 2 Linear relationships

1 a Using a 0.5 cm grid, draw these graphs on the same number plane.

$$y = 3x + 1, y = 3x - 1, y = 3x, y = 3x + 2$$

- b What do you notice about all four graphs? Explain.
- c Without plotting points, add the graph of y = 3x + 3 to your number plane in part a. Explain how you knew what to draw.

2 a On the number plane from question 1, draw these graphs.

$$y = 2x + 1, y = 3x + 1, y = x + 1$$

- **b** What do you notice about all three graphs? Explain.
- c Without plotting points, add the graph of y = 4x + 1 to your number plane. Explain how you knew what to draw
- **3** a On another number plane draw the graphs of y = x + 1, y = -x + 1.
 - **b** What do you notice about these two graphs? Explain.
 - c On a second number plane draw graphs of y = x and y = -x.
 - d What do you notice about these two graphs? Explain.
 - e On a third number plane draw graphs of y = 2x + 1 and y = -2x + 1.
 - f What do you notice about these two graphs? Explain.
 - g How can you decide if a graph is increasing or decreasing based on the equation?

In Investigation 2 you found the following properties of straight-line graphs.

- 1 If the coefficient of x is the same in each equation, the lines are parallel. For example, y = 2x + 1 and y = 2x 3 are parallel.
- 2 The constant term (the term without x) is where the line cuts the y-axis.
 - For example, y = -2x + 1 cuts the y-axis at y = 1. This is the y-intercept.
- 3 Lines with the coefficient of x equal but opposite in sign have the same slope but in opposite directions.
- **4** As we move from left to right, lines with a positive coefficient of *x* have an 'uphill' slope. Lines with a negative coefficient of *x* have a 'downhill' slope.

Check your answers

6 a y = 2x - 1

x	-2	-1	0	1	2
у	-5	-3	-1	1	3

b y = 3x + 2

x	-2	-1	0	1	2
у	-4	-1	2	5	8

y = 2x + 3

x	-2	-1	0	1	2
у	-1	1	3	5	7

d y = 4x + 1

x	-2	-1	0	1	2
у	-7	-3	1	5	9

e y = 4x - 3

x	-2	-1	0	1	2
у	-11	-7	-3	1	5

y = -2x + 1

x	-2	-1	0	1	2
у	5	3	1	-1	-3

y = -3x + 2

x	-2	-1	0	1	2
y	8	5	2	-1	-4

h y = 2x - 3

x	-2	-1	0	1	2
у	-7	-5	-3	-1	1

y = -2x + 5

x	-2	-1	0	1	2
у	9	7	5	3	1