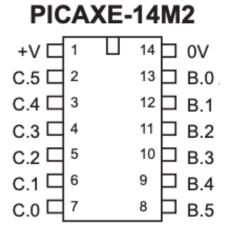

Year 10 DGT 2020 Assessment -1 Study Guide

Electronic Components – Symbols and names


Image	Component Name	Symbol
ME555H B 1828	555 timer	1[]8 2[\(\omega \)]7 3[\(\omega \)]6 4[]5
	speaker	[('(
	buzzer	
Willow .	Fixed Value Resistor	—
	LDR	

	Potentiometer	
	Transistor	B C E
Pas de la	Electrolyte Capacitor	
104	Non- Electrolyte Capacitor	
	LED	

08M2 and 14M2 Picaxe Micro-Controller

Picaxe programmes

Using the 08M2 Picaxe to write a programme with comments to alternatively flash red and green LED's on/off for 1 second and repeat continuously.

Green led = pin c.1 Red led = pin c.4

1.	start:	'A label address
2.	high c.1	Turn on pin c.1
3.	low c.4	Turn off pin c.4
4.	pause 1000	'Pause for 1000 milliseconds which equals to 1s
5.	low c.1	'Turn off pin c.1
6.	high c.4	Turn on pin c.4
7.	pause 1000	'Pause for 1000 milliseconds which equals to 1s
8.	goto start	'Go to start and repeat the programme

Moodlight Code:

Using the 14M2 Picaxe to write a programme with comments to alternatively flash red and green LED's on/off for 1 second and repeat continuously.

```
start:
red led
    for b0=10 to 255 step 5
    pwmout b.2,64,b0
    debug b0
    pause 100
    next b0
    for b0=255 to 10 step -5
    pwmout b.2,64,b0
    debug b0
    pause 100
    next b0
    goto greenled
greenled:
green led
    for b1=10 to 255 step 5
    pwmout b.4,64,b1
    debug b1
    pause 100
    next b1
    for b1=255 to 10 step -5
    pwmout b.4,64,b1
    debug b1
    pause 100
    next b1
    goto blueled
blueled:
blue led
    for b2 = 10 to 255 step 5
    pwmout c.2,64,b2
    debug b2
    pause 100
    next b2
    for b2=255 to 10 step -5
    pwmout c.2,64,b2
    debug b2
    pause 100
    next b2
    goto start
```

Soldering

Comparing the two solder joints in images 1 and 2.

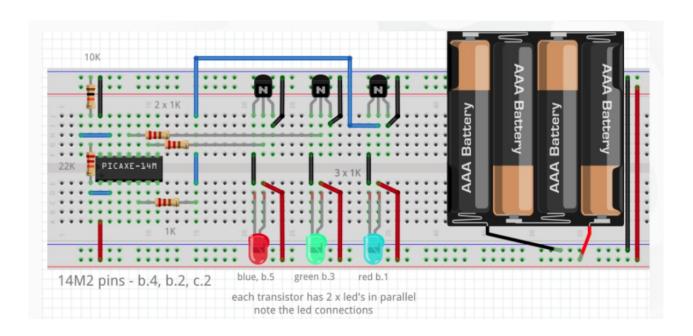
Image-2

- 0 -

Good points – Image 2:

- 1-Solder joints are formed evenly
- 2- Solder contacts both the circuit board and the component leads

Bad points- Image 1


- 1- Too much solder
- 2- Solder does not contact both the circuit board and the component leads

Consequences of a badly soldered joint;

- 1/ Poor contact between the circuit and the component = lack of continuity
- 2/ Burned tracks resulting in poor continuity and/or a ruined circuit board

Breadboard circuit

Moodlight breadboard circuit:

Using the Multi Meters

The multi meter has connection points for the positive and negative leads. Points where these leads connect to the meter when measuring ${\bf VOLTAGE}$

Meter dial settings:

1- Multimeter measuring resistance:

2- Multi meter measuring DC voltage

3- Multimeter measuring continuity test

